-
6
-
-
0035913290
-
-
B. Giese, J. Amaudrut, A.-K. Köhler, M. Spormann, and S. Wessely, Nature (London) 412, 318 (2001).
-
(2001)
Nature (London)
, vol.412
, pp. 318
-
-
Giese, B.1
Amaudrut, J.2
Köhler, A.-K.3
Spormann, M.4
Wessely, S.5
-
7
-
-
0032717327
-
-
M. Bixon, B. Giese, S. Wessely, T. Langenbacher, M. E. Michel-Beyerle, and J. Jortner, Proc. Natl. Acad. Sci. U.S.A. 96, 11 713 (1999).
-
(1999)
Proc. Natl. Acad. Sci. U.S.A.
, vol.96
, pp. 11 713
-
-
Bixon, M.1
Giese, B.2
Wessely, S.3
Langenbacher, T.4
Michel-Beyerle, M.E.5
Jortner, J.6
-
8
-
-
0342961139
-
-
R. Bruinsma, G. Grüner, M. R. D’Orsogna, and J. Rudnick, Phys. Rev. Lett. 85, 4393 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 4393
-
-
Bruinsma, R.1
Grüner, G.2
D’Orsogna, M.R.3
Rudnick, J.4
-
10
-
-
0001204926
-
-
G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Phys. Rev. A 55, 4318 (1997).
-
(1997)
Phys. Rev. A
, vol.55
, pp. 4318
-
-
Milburn, G.J.1
Corney, J.2
Wright, E.M.3
Walls, D.F.4
-
11
-
-
85036421706
-
-
A. S. Davydov, Solitons in Molecular Systems (Kluwer Academic Publishers, Dordrecht, 1991)
-
A. S. Davydov, Solitons in Molecular Systems (Kluwer Academic Publishers, Dordrecht, 1991).
-
-
-
-
12
-
-
85036239302
-
-
Strictly speaking, when considering polarons, one has to consider the full configurational space of the system which includes the lattice degrees of freedom changing independently of (Formula presented). In principle, there could be unstable directions corresponding to a certain change of the lattice configuration not allowed by the condition (4). However, this turns out not to be the case: it can be shown that none of the independent fluctuations of the lattice (Formula presented) can lead to an instability. Formally speaking, the full quadratic form [analogous to Eq. (9)] turns out to be positive definite on independent vectors (Formula presented). Physically, this fact is the consequence of stability of the lattice itself
-
Strictly speaking, when considering polarons, one has to consider the full configurational space of the system which includes the lattice degrees of freedom changing independently of (Formula presented). In principle, there could be unstable directions corresponding to a certain change of the lattice configuration not allowed by the condition (4). However, this turns out not to be the case: it can be shown that none of the independent fluctuations of the lattice (Formula presented) can lead to an instability. Formally speaking, the full quadratic form [analogous to Eq. (9)] turns out to be positive definite on independent vectors (Formula presented). Physically, this fact is the consequence of stability of the lattice itself.
-
-
-
-
13
-
-
0000122921
-
-
R. J. Dodd, M. Edwards, C. J. Williams, C. W. Clark, M. J. Holland, P. A. Ruprecht, and K. Burnett, Phys. Rev. A 54, 661 (1996).
-
(1996)
Phys. Rev. A
, vol.54
, pp. 661
-
-
Dodd, R.J.1
Edwards, M.2
Williams, C.J.3
Clark, C.W.4
Holland, M.J.5
Ruprecht, P.A.6
Burnett, K.7
-
14
-
-
85036346840
-
-
R. Rajaraman, Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory (North-Holland, Amsterdam, 1987)
-
R. Rajaraman, Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory (North-Holland, Amsterdam, 1987).
-
-
-
-
18
-
-
0034614038
-
-
F. D. Lewis, X. Li, J. Liu, R. T. Hayes, and M. R. Wasielewski, J. Am. Chem. Soc. 122, 12 037 (2000).
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 12 037
-
-
Lewis, F.D.1
Li, X.2
Liu, J.3
Hayes, R.T.4
Wasielewski, M.R.5
|