메뉴 건너뛰기




Volumn 71, Issue 3, 2005, Pages

Diffuse interface approach to brittle fracture

Author keywords

[No Author keywords available]

Indexed keywords

DIFFUSE INTERFACE TECHNIQUES; LINEAR ELASTICITY; PHASE FIELD MODELS; SOLID-SOLID TRANSFORMATIONS;

EID: 41349093713     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.71.036110     Document Type: Article
Times cited : (41)

References (21)
  • 2
    • 0036036465 scopus 로고    scopus 로고
    • H. Emmerich, The Diffuse Interface Approach in Condensed Matter (Springer, Berlin, 2003); L.-Q. Chen, Annu. Rev. Mater. Sci. 32, 113 (2002).
    • (2002) Annu. Rev. Mater. Sci. , vol.32 , pp. 113
    • Chen, L.-Q.1
  • 6
    • 0242271396 scopus 로고    scopus 로고
    • The theory presented by Y. M. Jin, Y. U. Wang, and A. G. Khachaturyan [Philos. Mag. 83, 1587 (2003)] uses a phase field of tensorial nature, and then is close to the one we present here. However, it seems to be applicable only when there is a finite number of cleavage planes in the material.
    • (2003) Philos. Mag. , vol.83 , pp. 1587
    • Jin, Y.M.1    Wang, Y.U.2    Khachaturyan, A.G.3
  • 8
    • 19544384902 scopus 로고    scopus 로고
    • A. Karma and A. E. Lobkovsky, Phys. Rev. Lett. 92, 245510 (2004); H. Henry and H. Levine, ibid 93, 105504 (2004).
    • (2004) Phys. Rev. Lett. , vol.93 , pp. 105504
    • Henry, H.1    Levine, H.2
  • 11
    • 33646975658 scopus 로고    scopus 로고
    • note
    • That is why we prefer to call our approach a diffuse interface one. We reserve the term "phase field model" for cases where there are additional fields.
  • 12
    • 33646988306 scopus 로고    scopus 로고
    • note
    • j), and then in its present form our formalism does not properly describe problems in which finite relative rotations of different parts of the body occur.
  • 17
    • 33646987471 scopus 로고    scopus 로고
    • note
    • 3, and enforce the compatibility condition by using a Lagrange multiplier. Notwithstanding, it should be mentioned that another possibility is to use only two truly independent variables, expressing explicitly the third one in terms of the other two using the compatibility equation (3). In that case we would obtain a nonlocal, long range interaction between the two independent variables, as explained in Refs. [11,12]
  • 18
    • 33646977333 scopus 로고    scopus 로고
    • note
    • We expect that the exact form of the expression we use to interpolate between the quadratic dependence at low ε and the constant value at large ε captures in the macroscopic model some relevant details of the material at the microscopic scale (see Ref. [17]).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.