-
1
-
-
0035621902
-
Low and high field scaling limits for the Vlasov- and Wigner-Poisson-Fokker-Planck systems
-
Arnold A., Carrillo J.A., Gamba I., and Shu C. Low and high field scaling limits for the Vlasov- and Wigner-Poisson-Fokker-Planck systems. Transport Theory Statist. Phys. 30 (2001) 121-153
-
(2001)
Transport Theory Statist. Phys.
, vol.30
, pp. 121-153
-
-
Arnold, A.1
Carrillo, J.A.2
Gamba, I.3
Shu, C.4
-
2
-
-
41349094405
-
-
A.G. Athanassoulis, Smoothed Wigner transforms and homogenization of wave propagation, Ph.D. thesis; temporarily available at http://www.math.princeton.edu/~aathanas/mns81/thesis.zip
-
A.G. Athanassoulis, Smoothed Wigner transforms and homogenization of wave propagation, Ph.D. thesis; temporarily available at http://www.math.princeton.edu/~aathanas/mns81/thesis.zip
-
-
-
-
3
-
-
41349099676
-
-
A.G. Athanassoulis, Smoothed Wigner transforms in the numerical simulation of semiclassical (high-frequency) wave propagation, Dyn. Contin. Discrete Impuls. Syst. Ser. A (Special Issue), in press
-
A.G. Athanassoulis, Smoothed Wigner transforms in the numerical simulation of semiclassical (high-frequency) wave propagation, Dyn. Contin. Discrete Impuls. Syst. Ser. A (Special Issue), in press
-
-
-
-
4
-
-
0742323675
-
Maslov's canonical operator for nonrelativistic equations of quantum mechanics in curved nanotubes
-
Belov V.V., Dobrokhotov S.Y., Sinitsy S.O., and Ya T. Maslov's canonical operator for nonrelativistic equations of quantum mechanics in curved nanotubes. Dokl. Ross. Akad. Nauk 68 (2003) 460-465
-
(2003)
Dokl. Ross. Akad. Nauk
, vol.68
, pp. 460-465
-
-
Belov, V.V.1
Dobrokhotov, S.Y.2
Sinitsy, S.O.3
Ya, T.4
-
6
-
-
10444272513
-
Nonlinear transformation of differential equations into phase space
-
Cohen L., and Galleani L. Nonlinear transformation of differential equations into phase space. EURASIP J. Appl. Signal Process. 12 (2004) 1770-1777
-
(2004)
EURASIP J. Appl. Signal Process.
, vol.12
, pp. 1770-1777
-
-
Cohen, L.1
Galleani, L.2
-
8
-
-
0141582037
-
Generalized phase space distributions
-
Cohen L. Generalized phase space distributions. J. Math. Phys. 7 (1966) 781-786
-
(1966)
J. Math. Phys.
, vol.7
, pp. 781-786
-
-
Cohen, L.1
-
9
-
-
24644487123
-
Computational high frequency wave propagation
-
Engquist B., and Runborg O. Computational high frequency wave propagation. Acta Numer. 12 (2003) 181-266
-
(2003)
Acta Numer.
, vol.12
, pp. 181-266
-
-
Engquist, B.1
Runborg, O.2
-
10
-
-
28244480472
-
Nonlinear Schrödinger equation with a white-noise potential: Phase-space approach to spread and singularity
-
Fannjiang A.C. Nonlinear Schrödinger equation with a white-noise potential: Phase-space approach to spread and singularity. Phys. D 212 (2005) 195-204
-
(2005)
Phys. D
, vol.212
, pp. 195-204
-
-
Fannjiang, A.C.1
-
11
-
-
26044438778
-
White-noise and geometrical optics limits of Wigner-Moyal equation for beam waves in turbulent media II: Two-frequency formulation
-
Fannjiang A.C. White-noise and geometrical optics limits of Wigner-Moyal equation for beam waves in turbulent media II: Two-frequency formulation. J. Stat. Phys. 120 (2005) 543-586
-
(2005)
J. Stat. Phys.
, vol.120
, pp. 543-586
-
-
Fannjiang, A.C.1
-
12
-
-
0042977374
-
High frequency behavior of the focusing nonlinear Schrödinger equation with random inhomogeneities
-
(eetron)
-
Fannjiang A.C., Jin S., and Papanicolaou G. High frequency behavior of the focusing nonlinear Schrödinger equation with random inhomogeneities. SIAM J. Appl. Math. 63 (2003) 1328-1358 (eetron)
-
(2003)
SIAM J. Appl. Math.
, vol.63
, pp. 1328-1358
-
-
Fannjiang, A.C.1
Jin, S.2
Papanicolaou, G.3
-
13
-
-
0141680711
-
A Landau-Zener formula for non-degenerated involutive codimension 3 crossings
-
Fermanian Kammerer C., and Gerard P. A Landau-Zener formula for non-degenerated involutive codimension 3 crossings. Ann. Henri Poincare 4 3 (2003) 513-552
-
(2003)
Ann. Henri Poincare
, vol.4
, Issue.3
, pp. 513-552
-
-
Fermanian Kammerer, C.1
Gerard, P.2
-
14
-
-
33646865343
-
Semiclassical Wigner function and geometrical optics
-
(eetron)
-
Filippas S., and Makrakis G.N. Semiclassical Wigner function and geometrical optics. Multiscale Model. Simul. 1 (2003) 674-710 (eetron)
-
(2003)
Multiscale Model. Simul.
, vol.1
, pp. 674-710
-
-
Filippas, S.1
Makrakis, G.N.2
-
16
-
-
0001969528
-
The Wigner-Ville spectrum of nonstationary random signals
-
Mecklenbrauker W., and Hlawatsch F. (Eds), Elsevier, Amsterdam
-
Flandrin P., and Martin W. The Wigner-Ville spectrum of nonstationary random signals. In: Mecklenbrauker W., and Hlawatsch F. (Eds). The Wigner Distribution (1997), Elsevier, Amsterdam 211-267
-
(1997)
The Wigner Distribution
, pp. 211-267
-
-
Flandrin, P.1
Martin, W.2
-
18
-
-
41349092553
-
A microlocal version of concentration-compactness
-
Partial Differential Equations and Mathematical Physics, Birkhäuser, Boston
-
Gerard P. A microlocal version of concentration-compactness. Partial Differential Equations and Mathematical Physics. Progr. Nonlinear Differential Equations Appl. vol. 21 (1996), Birkhäuser, Boston 143-157
-
(1996)
Progr. Nonlinear Differential Equations Appl.
, vol.21
, pp. 143-157
-
-
Gerard, P.1
-
21
-
-
0000631775
-
An algebra of pseudodifferential operators and quantum mechanics in phase space
-
Grossmann A., Loupias G., and Stein E.M. An algebra of pseudodifferential operators and quantum mechanics in phase space. Ann. Inst. Fourier (Grenoble) 18 (1968) 343-368
-
(1968)
Ann. Inst. Fourier (Grenoble)
, vol.18
, pp. 343-368
-
-
Grossmann, A.1
Loupias, G.2
Stein, E.M.3
-
22
-
-
41349086357
-
Statistical theory for incoherent light propagation in nonlinear media
-
Hall B., Lisak M., Anderson D., Fedele R., and Semenov V.E. Statistical theory for incoherent light propagation in nonlinear media. Phys. Rev. E 65 (2002)
-
(2002)
Phys. Rev. E
, vol.65
-
-
Hall, B.1
Lisak, M.2
Anderson, D.3
Fedele, R.4
Semenov, V.E.5
-
23
-
-
0004615396
-
The interference structure of the Wigner distribution and related time-frequency signal representations
-
Mecklenbrauker W., and Hlawatsch F. (Eds), Elsevier, Amsterdam
-
Hlawatsch F., and Flandrin P. The interference structure of the Wigner distribution and related time-frequency signal representations. In: Mecklenbrauker W., and Hlawatsch F. (Eds). The Wigner Distribution (1997), Elsevier, Amsterdam 59-133
-
(1997)
The Wigner Distribution
, pp. 59-133
-
-
Hlawatsch, F.1
Flandrin, P.2
-
24
-
-
0008116632
-
-
SIAM, Philadelphia, PA
-
Jaffard S., Meyer Y., and Ryan R.D. Wavelets (2001), SIAM, Philadelphia, PA
-
(2001)
Wavelets
-
-
Jaffard, S.1
Meyer, Y.2
Ryan, R.D.3
-
25
-
-
0037512928
-
Positivity and spread of bilinear time-frequency distributions
-
Mecklenbrauker W., and Hlawatsch F. (Eds), Elsevier, Amsterdam
-
Janssen A.J.E.M. Positivity and spread of bilinear time-frequency distributions. In: Mecklenbrauker W., and Hlawatsch F. (Eds). The Wigner Distribution (1997), Elsevier, Amsterdam 1-58
-
(1997)
The Wigner Distribution
, pp. 1-58
-
-
Janssen, A.J.E.M.1
-
26
-
-
0442331531
-
Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs. Wigner
-
Jin S., and Li X. Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs. Wigner. Phys. D 182 (2003) 46-85
-
(2003)
Phys. D
, vol.182
, pp. 46-85
-
-
Jin, S.1
Li, X.2
-
27
-
-
23944519965
-
Computing multi-valued physical observables for the high frequency limit of symmetric hyperbolic systems
-
Jin S., Liu H., Osher S., and Tsai R. Computing multi-valued physical observables for the high frequency limit of symmetric hyperbolic systems. J. Comput. Phys. 210 (2005) 497-518
-
(2005)
J. Comput. Phys.
, vol.210
, pp. 497-518
-
-
Jin, S.1
Liu, H.2
Osher, S.3
Tsai, R.4
-
28
-
-
16844373042
-
Computing multivalued physical observables for the semiclassical limit of the Schrödinger equation
-
Jin S., Liu H., Osher S., and Tsai R. Computing multivalued physical observables for the semiclassical limit of the Schrödinger equation. J. Comput. Phys. 205 (2005) 222-241
-
(2005)
J. Comput. Phys.
, vol.205
, pp. 222-241
-
-
Jin, S.1
Liu, H.2
Osher, S.3
Tsai, R.4
-
29
-
-
33746908593
-
Parallel parameter study of the Wigner-Poisson equations for RTDs
-
Lasater M.S., Kelley C.T., Salinger A.G., Woolard D.L., and Zhao P. Parallel parameter study of the Wigner-Poisson equations for RTDs. Comput. Math. Appl. 51 (2006) 1677-1688
-
(2006)
Comput. Math. Appl.
, vol.51
, pp. 1677-1688
-
-
Lasater, M.S.1
Kelley, C.T.2
Salinger, A.G.3
Woolard, D.L.4
Zhao, P.5
-
31
-
-
36449006348
-
A Wigner-function approach to (semi)classical limits: Electrons in a periodic potential
-
Markowich P.A., Mauser N.J., and Poupaud F. A Wigner-function approach to (semi)classical limits: Electrons in a periodic potential. J. Math. Phys. 35 (1994) 1066-1094
-
(1994)
J. Math. Phys.
, vol.35
, pp. 1066-1094
-
-
Markowich, P.A.1
Mauser, N.J.2
Poupaud, F.3
-
32
-
-
33644606167
-
(Semi)classical limits of Schrödinger-Poisson systems via Wigner transforms
-
Univ. Nantes Ep. No. 12
-
Mauser N.J. (Semi)classical limits of Schrödinger-Poisson systems via Wigner transforms. Journees Equations aux Derivees Partielles (2002), Univ. Nantes Ep. No. 12
-
(2002)
Journees Equations aux Derivees Partielles
-
-
Mauser, N.J.1
-
33
-
-
84952911698
-
Quantum mechanics as a statistical theory
-
Moyal J.E. Quantum mechanics as a statistical theory. Proc. Cambridge Philos. Soc. 45 (1949) 99-124
-
(1949)
Proc. Cambridge Philos. Soc.
, vol.45
, pp. 99-124
-
-
Moyal, J.E.1
-
34
-
-
0035827490
-
On the well-posedness of equations for smoothed phase space distribution functions and irreversibility in classical statistical mechanics
-
Muratov B. On the well-posedness of equations for smoothed phase space distribution functions and irreversibility in classical statistical mechanics. J. Phys. A 34 (2001) 4641-4651
-
(2001)
J. Phys. A
, vol.34
, pp. 4641-4651
-
-
Muratov, B.1
-
35
-
-
0035250279
-
Fast computation of the ambiguity function and the Wigner distribution on arbitrary line segments
-
Ozdemir K., and Arikan O. Fast computation of the ambiguity function and the Wigner distribution on arbitrary line segments. IEEE Trans. Signal Process. 49 (2001) 381-393
-
(2001)
IEEE Trans. Signal Process.
, vol.49
, pp. 381-393
-
-
Ozdemir, K.1
Arikan, O.2
-
36
-
-
0002379655
-
Mathematical aspects of the Weyl correspondence
-
Pool J.C.T. Mathematical aspects of the Weyl correspondence. J. Math. Phys. 7 (1966) 66-76
-
(1966)
J. Math. Phys.
, vol.7
, pp. 66-76
-
-
Pool, J.C.T.1
-
37
-
-
0030388835
-
Transport equations for elastic and other waves in random media
-
Ryzhik L., Papanicolaou G., and Keller J.B. Transport equations for elastic and other waves in random media. Wave Motion 24 (1996) 327-370
-
(1996)
Wave Motion
, vol.24
, pp. 327-370
-
-
Ryzhik, L.1
Papanicolaou, G.2
Keller, J.B.3
-
38
-
-
84887251437
-
Wigner functions versus WKB-methods in multivalued geometrical optics
-
Sparber, Markowich P.A., and Mauser N.J. Wigner functions versus WKB-methods in multivalued geometrical optics. Asymptot. Anal. 33 (2003) 153-187
-
(2003)
Asymptot. Anal.
, vol.33
, pp. 153-187
-
-
Sparber1
Markowich, P.A.2
Mauser, N.J.3
-
39
-
-
84931510621
-
The Wigner representation of quantum mechanics
-
Tatarskii V.I. The Wigner representation of quantum mechanics. Sov. Phys. Usp. 26 (1983) 311-327
-
(1983)
Sov. Phys. Usp.
, vol.26
, pp. 311-327
-
-
Tatarskii, V.I.1
-
41
-
-
33745014742
-
On the quantum correction for thermodynamic equilibrium
-
Wigner E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40 (1932) 749
-
(1932)
Phys. Rev.
, vol.40
, pp. 749
-
-
Wigner, E.1
-
42
-
-
33751202687
-
The phase flow method
-
Ying L., and Candes E. The phase flow method. J. Comput. Phys. 220 (2006) 184-215
-
(2006)
J. Comput. Phys.
, vol.220
, pp. 184-215
-
-
Ying, L.1
Candes, E.2
-
43
-
-
0036100942
-
The limit from the Schrödinger-Poisson to the Vlasov-Poisson equations with general data in one dimension
-
Zhang P., Zheng Y., and Mauser N.J. The limit from the Schrödinger-Poisson to the Vlasov-Poisson equations with general data in one dimension. Comm. Pure Appl. Math. 55 (2002) 582-632
-
(2002)
Comm. Pure Appl. Math.
, vol.55
, pp. 582-632
-
-
Zhang, P.1
Zheng, Y.2
Mauser, N.J.3
|