메뉴 건너뛰기




Volumn 341, Issue 2, 2008, Pages 391-427

Asymptotic stability of solitons of the gKdV equations with general nonlinearity

Author keywords

[No Author keywords available]

Indexed keywords


EID: 41249090438     PISSN: 00255831     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00208-007-0194-z     Document Type: Article
Times cited : (88)

References (27)
  • 1
    • 0020591567 scopus 로고
    • Nonlinear scalar field equations. I. Existence of a ground state
    • Berestycki H. and Lions P.-L. (1983). Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82: 313-345
    • (1983) Arch. Ration. Mech. Anal. , vol.82 , pp. 313-345
    • Berestycki, H.1    Lions, P.-L.2
  • 2
    • 0023648120 scopus 로고
    • Stability and instability of solitary waves of Korteweg-de Vries type
    • Bona J.L., Souganidis P.E. and Strauss W.A. (1987). Stability and instability of solitary waves of Korteweg-de Vries type. Proc. R. Soc. Lond. 411: 395-412
    • (1987) Proc. R. Soc. Lond. , vol.411 , pp. 395-412
    • Bona, J.L.1    Souganidis, P.E.2    Strauss, W.A.3
  • 3
    • 0002779183 scopus 로고
    • On the stability of solitary waves for nonlinear Schrödinger equations
    • Nonlinear evolution equations. Am. Math. Soc., Providence, RI
    • Buslaev, V.S., Perelman, G.S.: On the stability of solitary waves for nonlinear Schrödinger equations. Nonlinear evolution equations, pp. 75-98, Am. Math. Soc. Transl. Ser. 2, 164. Am. Math. Soc., Providence, RI (1995)
    • (1995) Am. Math. Soc. Transl. Ser. 2 , vol.164 , pp. 75-98
    • Buslaev, V.S.1    Perelman, G.S.2
  • 4
    • 0020598661 scopus 로고
    • The emergence of solutions of the Korteweg-de Vries equation from arbitrary initial conditions
    • Eckhaus W. and Schuur P. (1983). The emergence of solutions of the Korteweg-de Vries equation from arbitrary initial conditions. Math. Meth. Appl. Sci. 5: 97-116
    • (1983) Math. Meth. Appl. Sci. , vol.5 , pp. 97-116
    • Eckhaus, W.1    Schuur, P.2
  • 5
    • 38249018099 scopus 로고
    • Existence of nodal solutions of semilinear equations in {ℝ}
    • Grillakis M. (1990). Existence of nodal solutions of semilinear equations in {ℝ}. J. Diff. Eq. 85: 367-400
    • (1990) J. Diff. Eq. , vol.85 , pp. 367-400
    • Grillakis, M.1
  • 7
    • 84972580144 scopus 로고
    • On the (generalized) Korteweg-de Vries equation
    • Kenig C.E., Ponce G. and Vega L. (1989). On the (generalized) Korteweg-de Vries equation. Duke Math. J. 59: 585-610
    • (1989) Duke Math. J. , vol.59 , pp. 585-610
    • Kenig, C.E.1    Ponce, G.2    Vega, L.3
  • 8
    • 84990553608 scopus 로고
    • Well-posedness and scattering results for the generalized Korteweg- de Vries equation via the contraction principle
    • Kenig C.E., Ponce G. and Vega L. (1993). Well-posedness and scattering results for the generalized Korteweg- de Vries equation via the contraction principle. Comm. Pure Appl. Math. 46: 527-620
    • (1993) Comm. Pure Appl. Math. , vol.46 , pp. 527-620
    • Kenig, C.E.1    Ponce, G.2    Vega, L.3
  • 9
    • 33749459423 scopus 로고    scopus 로고
    • Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension
    • Krieger J. and Schlag W. (2006). Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension. J. Am. Math. Soc. 19: 815-920
    • (2006) J. Am. Math. Soc. , vol.19 , pp. 815-920
    • Krieger, J.1    Schlag, W.2
  • 10
    • 27544509563 scopus 로고    scopus 로고
    • Asymptotic N-soliton like solutions of the subcritical and critical generalized Korteweg- de Vries equations
    • Martel Y. (2005). Asymptotic N-soliton like solutions of the subcritical and critical generalized Korteweg- de Vries equations. Am. J. Math. 127: 1103-1140
    • (2005) Am. J. Math. , vol.127 , pp. 1103-1140
    • Martel, Y.1
  • 11
    • 34249016378 scopus 로고    scopus 로고
    • Linear problems related to asymptotic stability of solitons of the generalized KdV equations
    • Martel Y. (2006). Linear problems related to asymptotic stability of solitons of the generalized KdV equations. SIAM J. Math. Anal. 38: 759-781
    • (2006) SIAM J. Math. Anal. , vol.38 , pp. 759-781
    • Martel, Y.1
  • 12
    • 0034164847 scopus 로고    scopus 로고
    • A Liouville theorem for the critical generalized Korteweg-de Vries equation
    • Martel Y. and Merle F. (2000). A Liouville theorem for the critical generalized Korteweg-de Vries equation. J. Math. Pures Appl. 79: 339-425
    • (2000) J. Math. Pures Appl. , vol.79 , pp. 339-425
    • Martel, Y.1    Merle, F.2
  • 13
    • 0035609368 scopus 로고    scopus 로고
    • Asymptotic stability of solitons for subcritical generalized KdV equations
    • Martel Y. and Merle F. (2001). Asymptotic stability of solitons for subcritical generalized KdV equations. Arch. Ration. Mech. Anal. 157: 219-254
    • (2001) Arch. Ration. Mech. Anal. , vol.157 , pp. 219-254
    • Martel, Y.1    Merle, F.2
  • 14
    • 0035635809 scopus 로고    scopus 로고
    • Instability of solitons for the critical generalized Korteweg-de Vries equation
    • Martel Y. and Merle F. (2001). Instability of solitons for the critical generalized Korteweg-de Vries equation. Geom. Funct. Anal. 11: 74-123
    • (2001) Geom. Funct. Anal. , vol.11 , pp. 74-123
    • Martel, Y.1    Merle, F.2
  • 15
    • 11844251264 scopus 로고    scopus 로고
    • Asymptotic stability of solitons of the subcritical gKdV equations revisited
    • 1
    • Martel Y. and Merle F. (2005). Asymptotic stability of solitons of the subcritical gKdV equations revisited. Nonlinearity 18(1): 55-80
    • (2005) Nonlinearity , vol.18 , pp. 55-80
    • Martel, Y.1    Merle, F.2
  • 19
    • 0036882736 scopus 로고    scopus 로고
    • Tai-Peng Tsai, stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations
    • Martel Y. and Merle F. (2002). Tai-Peng Tsai, stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations. Commun. Math. Phys. 231: 347-373
    • (2002) Commun. Math. Phys. , vol.231 , pp. 347-373
    • Martel, Y.1    Merle, F.2
  • 20
    • 33746039746 scopus 로고    scopus 로고
    • 1 of the sum of K solitary waves for some nonlinear Schrödinger equations
    • 1 of the sum of K solitary waves for some nonlinear Schrödinger equations. Duke Math. J. 133: 405-466
    • (2006) Duke Math. J. , vol.133 , pp. 405-466
    • Martel, Y.1    Merle, F.2
  • 21
    • 0035538185 scopus 로고    scopus 로고
    • Large time asymptotics of solutions around solitary waves to the generalized Korteweg-de Vries equations
    • Mizumachi T. (2001). Large time asymptotics of solutions around solitary waves to the generalized Korteweg-de Vries equations. SIAM J. Math. Anal. 32: 1050-1080
    • (2001) SIAM J. Math. Anal. , vol.32 , pp. 1050-1080
    • Mizumachi, T.1
  • 22
    • 21844510556 scopus 로고
    • Asymptotic stability of solitary waves
    • Pego R.L. and Weinstein M.I. (1994). Asymptotic stability of solitary waves. Commun. Math. Phys. 164: 305-349
    • (1994) Commun. Math. Phys. , vol.164 , pp. 305-349
    • Pego, R.L.1    Weinstein, M.I.2
  • 23
    • 8744309907 scopus 로고    scopus 로고
    • Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations
    • Perelman G.S. (2004). Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations. Comm. Partial Diff. Equ. 29: 1051-1095
    • (2004) Comm. Partial Diff. Equ. , vol.29 , pp. 1051-1095
    • Perelman, G.S.1
  • 26
    • 0000686130 scopus 로고
    • Modulational stability of ground states of nonlinear Schrödinger equations
    • Weinstein M.I. (1985). Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16: 472-491
    • (1985) SIAM J. Math. Anal. , vol.16 , pp. 472-491
    • Weinstein, M.I.1
  • 27
    • 84990553584 scopus 로고
    • Lyapunov stability of ground states of nonlinear dispersive evolution equations
    • Weinstein M.I. (1986). Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math. 39: 51-68
    • (1986) Comm. Pure Appl. Math. , vol.39 , pp. 51-68
    • Weinstein, M.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.