-
1
-
-
34247880332
-
Parametrically excited vibrations of an oscillator with strong cubic negative nonlinearity
-
Livija, C. and K. Ivana, 2007. Parametrically excited vibrations of an oscillator with strong cubic negative nonlinearity. J. Sound Vib., 304: 201-212.
-
(2007)
J. Sound Vib
, vol.304
, pp. 201-212
-
-
Livija, C.1
Ivana, K.2
-
2
-
-
0027912280
-
Stability analysis of the non-linear Mathieu equation
-
Mond, M. and G. Cederbaum, 1993. Stability analysis of the non-linear Mathieu equation. J. Sound Vib., 167 (1): 77-89.
-
(1993)
J. Sound Vib
, vol.167
, Issue.1
, pp. 77-89
-
-
Mond, M.1
Cederbaum, G.2
-
3
-
-
15544389391
-
Existence of periodic solutions for the generalized form of Mathieu Equation
-
Younesian, D., E. Esmailzadeh and R. Sedaghati, 2005. Existence of periodic solutions for the generalized form of Mathieu Equation. Nonl. Dyn., 39: 335-348.
-
(2005)
Nonl. Dyn
, vol.39
, pp. 335-348
-
-
Younesian, D.1
Esmailzadeh, E.2
Sedaghati, R.3
-
4
-
-
0003663704
-
-
Holt, Rinehart and Winston, New York
-
Bellman, R., 1964. Perturbation Techniques in Mathematic, Physics and Engineering, Holt, Rinehart and Winston, New York.
-
(1964)
Perturbation Techniques in Mathematic, Physics and Engineering
-
-
Bellman, R.1
-
6
-
-
0002689317
-
New research directions in singular perturbation theory: Artificial parameter approach and inverse-perturbation technique
-
Shanghai
-
Liu, G.L., 1997. New research directions in singular perturbation theory: Artificial parameter approach and inverse-perturbation technique. Conference of 7th Modern Mathematics and Mechanics, Shanghai.
-
(1997)
Conference of 7th Modern Mathematics and Mechanics
-
-
Liu, G.L.1
-
7
-
-
0032307661
-
Approximate analytical solution for seepage flow with fractional derivatives in porous media
-
He, J.H., 1998. Approximate analytical solution for seepage flow with fractional derivatives in porous media. J. Comput. Math. Appl. Mech. Eng., 167: 57-68.
-
(1998)
J. Comput. Math. Appl. Mech. Eng
, vol.167
, pp. 57-68
-
-
He, J.H.1
-
8
-
-
0032308350
-
Approximate solution for nonlinear differential equations with convolution product nonlinearities
-
He, J.H., 1998. Approximate solution for nonlinear differential equations with convolution product nonlinearities. Comput. Math. Appl. Mech. Eng., 167: 69-73.
-
(1998)
Comput. Math. Appl. Mech. Eng
, vol.167
, pp. 69-73
-
-
He, J.H.1
-
9
-
-
0000092673
-
Variational iteration method: A kind of nonlinear analytical technique: Some examples
-
He, J.H., 1999. Variational iteration method: A kind of nonlinear analytical technique: Some examples. Int. J. Non-L. Mech., 344: 699-708.
-
(1999)
Int. J. Non-L. Mech
, vol.344
, pp. 699-708
-
-
He, J.H.1
-
10
-
-
33646893481
-
The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer
-
Ganji, D.D., 2006. The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer. Phys. Lett. A, 355: 337-341.
-
(2006)
Phys. Lett. A
, vol.355
, pp. 337-341
-
-
Ganji, D.D.1
-
11
-
-
41149140086
-
Applications of Homotopy Perturbation Method in Nonlinear Heat Diffusion-Convection-Reaction Equations
-
Tolou, N., D.D. Ganji, M.J. Hosseini and Z.Z. Ganji, 2007. Applications of Homotopy Perturbation Method in Nonlinear Heat Diffusion-Convection-Reaction Equations. The Open Mechanic J., 1: 20-25.
-
(2007)
The Open Mechanic J
, vol.1
, pp. 20-25
-
-
Tolou, N.1
Ganji, D.D.2
Hosseini, M.J.3
Ganji, Z.Z.4
-
12
-
-
34250636701
-
Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations
-
Ganji, D.D. and A. Sadighi, 2007. Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations. J. Comput. Appl. Math., 207: 24-34.
-
(2007)
J. Comput. Appl. Math
, vol.207
, pp. 24-34
-
-
Ganji, D.D.1
Sadighi, A.2
-
13
-
-
34347345899
-
Approximate explicit solutions of nonlinear BBMB equations by He's methods and comparison with the exact solution
-
Tari, H. and D.D. Ganji, 2007. Approximate explicit solutions of nonlinear BBMB equations by He's methods and comparison with the exact solution, Phy. Lett., 367: 95-101.
-
(2007)
Phy. Lett
, vol.367
, pp. 95-101
-
-
Tari, H.1
Ganji, D.D.2
-
14
-
-
33745965279
-
Explicit solutions of Helmholtz equation and fifth-order KdV equation using homotopy perturbation method
-
Rafei, M.and D.D. Ganji, 2006. Explicit solutions of Helmholtz equation and fifth-order KdV equation using homotopy perturbation method, Int. J. Nonl. Sci. Numer. Simulation, 7 (3): 321-328.
-
(2006)
Int. J. Nonl. Sci. Numer. Simulation
, vol.7
, Issue.3
, pp. 321-328
-
-
Rafei, M.1
Ganji, D.D.2
-
15
-
-
33748919061
-
Application of He's homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations
-
Ganji, D.D. and A. Sadighi, 2006. Application of He's homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations. Int. J. Nonl. Sci. Numer. Simulation, 7 (4): 411-418.
-
(2006)
Int. J. Nonl. Sci. Numer. Simulation
, vol.7
, Issue.4
, pp. 411-418
-
-
Ganji, D.D.1
Sadighi, A.2
-
16
-
-
34248377013
-
Solution of nonlinear dynamic differential equations based on numerical Laplace transform inversion
-
Suying, Z., Z. Minzhen, D. Zichen and L. Wencheng, 2006. Solution of nonlinear dynamic differential equations based on numerical Laplace transform inversion. Applied Math. Comput., 189: 79-86.
-
(2006)
Applied Math. Comput
, vol.189
, pp. 79-86
-
-
Suying, Z.1
Minzhen, Z.2
Zichen, D.3
Wencheng, L.4
-
17
-
-
33745852188
-
Homotopy-perturbation method for pure nonlinear differential equation
-
Cveticanin, L., 2005. Homotopy-perturbation method for pure nonlinear differential equation. Chaos Solitons Fractals, 30: 1221-1230.
-
(2005)
Chaos Solitons Fractals
, vol.30
, pp. 1221-1230
-
-
Cveticanin, L.1
-
18
-
-
34249898148
-
Application of He's homotopy perturbation method to the Duffing-harmonic oscillator
-
Belendez, A., A. Hernandez and T. Belendez et al., 2007. Application of He's homotopy perturbation method to the Duffing-harmonic oscillator. Int. J. Nonl. Sci. Numer. Simulation, 8 (1): 79-88.
-
(2007)
Int. J. Nonl. Sci. Numer. Simulation
, vol.8
, Issue.1
, pp. 79-88
-
-
Belendez, A.1
Hernandez, A.2
Belendez, T.3
-
19
-
-
0032672778
-
Homotopy perturbation technique
-
He, J.H., 1999. Homotopy perturbation technique, J. Comput. Math. Appl. Mech. Eng., 178: 257-262.
-
(1999)
J. Comput. Math. Appl. Mech. Eng
, vol.178
, pp. 257-262
-
-
He, J.H.1
-
20
-
-
0033702384
-
A coupling method of a homotopy technique and a perturbation technique for non-linear problems
-
He, J.H., 2000. A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Non-L. Mech., 35: 35-43.
-
(2000)
Int. J. Non-L. Mech
, vol.35
, pp. 35-43
-
-
He, J.H.1
-
21
-
-
0037440579
-
Homotopy perturbation method: A new nonlinear analytical technique
-
He, J.H., 2003. Homotopy perturbation method: a new nonlinear analytical technique. J. Appl. Math. Comput., 135: 73-79.
-
(2003)
J. Appl. Math. Comput
, vol.135
, pp. 73-79
-
-
He, J.H.1
-
22
-
-
1242287587
-
The homotopy perturbation method for nonlinear oscillators with discontinuities
-
He, J.H., 2004. The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. Math. Comput., 151: 287-292.
-
(2004)
Appl. Math. Comput
, vol.151
, pp. 287-292
-
-
He, J.H.1
-
23
-
-
34249996463
-
Application of parameter-expanding method to strongly nonlinear oscillators
-
Shou D.H. and J.H. He, 2007. Application of parameter-expanding method to strongly nonlinear oscillators. J. Comput. Int. J. Nonl. Sci. Num. Simulation, 8 (1): 121-124.
-
(2007)
J. Comput. Int. J. Nonl. Sci. Num. Simulation
, vol.8
, Issue.1
, pp. 121-124
-
-
Shou, D.H.1
He, J.H.2
|