-
1
-
-
0032136132
-
New meshless local Petrov-Galerkin (MLPG) approach in computational mechanics
-
Atluri S.N., and Zhu T. New meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22 2 (1998) 117-127
-
(1998)
Comput. Mech.
, vol.22
, Issue.2
, pp. 117-127
-
-
Atluri, S.N.1
Zhu, T.2
-
3
-
-
0025229330
-
Multiquadrics - A scattered data approximation scheme with applications to computation fluid-dynamics-I: Surface approximations and partial derivatives estimates
-
Kansa E.J. Multiquadrics - A scattered data approximation scheme with applications to computation fluid-dynamics-I: Surface approximations and partial derivatives estimates. Comput. Math. Appl. 19 (1990) 127-145
-
(1990)
Comput. Math. Appl.
, vol.19
, pp. 127-145
-
-
Kansa, E.J.1
-
4
-
-
0025210711
-
Multiquadrics - A scattared data approximation scheme with applications to computation fluid-dynamics-II: Solution to parabolic, hyperbolic and elliptic partial differential equations
-
Kansa E.J. Multiquadrics - A scattared data approximation scheme with applications to computation fluid-dynamics-II: Solution to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19 (1990) 147-161
-
(1990)
Comput. Math. Appl.
, vol.19
, pp. 147-161
-
-
Kansa, E.J.1
-
5
-
-
0001307703
-
Domain decomposition and local refinement for multiquadric approximations. I: Second-order equations in one-dimension
-
Dubal M.R. Domain decomposition and local refinement for multiquadric approximations. I: Second-order equations in one-dimension. J. Appl. Sci. 1 1 (1994) 146-171
-
(1994)
J. Appl. Sci.
, vol.1
, Issue.1
, pp. 146-171
-
-
Dubal, M.R.1
-
6
-
-
0002879831
-
An efficient numerical scheme for Burgers' equations
-
Hon Y.C., and Mao X.Z. An efficient numerical scheme for Burgers' equations. Appl. Math. Comput. 95 (1998) 37-50
-
(1998)
Appl. Math. Comput.
, vol.95
, pp. 37-50
-
-
Hon, Y.C.1
Mao, X.Z.2
-
7
-
-
0032529187
-
A numerical method for heat transfer problems using collocation and radial basis functions
-
Zerroukat M., Power H., and Chen C.S. A numerical method for heat transfer problems using collocation and radial basis functions. Internat. J. Numer. Methods Engrg. 42 (1998) 1263-1279
-
(1998)
Internat. J. Numer. Methods Engrg.
, vol.42
, pp. 1263-1279
-
-
Zerroukat, M.1
Power, H.2
Chen, C.S.3
-
8
-
-
0004070330
-
-
Inverno R.d. (Ed), Cambridge University Press, Cambridge, UK
-
Dubal M.R., Olivera S.R., and Matzner R.A. In: Inverno R.d. (Ed). Approaches to Numerical Relativity (1993), Cambridge University Press, Cambridge, UK
-
(1993)
Approaches to Numerical Relativity
-
-
Dubal, M.R.1
Olivera, S.R.2
Matzner, R.A.3
-
9
-
-
0034173976
-
Circumventing the ill conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations
-
Kansa E.J., and Hon Y.C. Circumventing the ill conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations. Comput. Math. Appl. 39 (2000) 123-137
-
(2000)
Comput. Math. Appl.
, vol.39
, pp. 123-137
-
-
Kansa, E.J.1
Hon, Y.C.2
-
10
-
-
0036468097
-
Improved multiquadratic method for elliptic partial differential equation via PDE collocation on the boundary
-
Fedoseyev A.I., Friedmann M.J., and Kansa E.J. Improved multiquadratic method for elliptic partial differential equation via PDE collocation on the boundary. Comput. Math. Appl. 43 (2002) 439-455
-
(2002)
Comput. Math. Appl.
, vol.43
, pp. 439-455
-
-
Fedoseyev, A.I.1
Friedmann, M.J.2
Kansa, E.J.3
-
11
-
-
33644890498
-
Results on meshless collocation techniques
-
Ling L., Opfer R., and Schaback R. Results on meshless collocation techniques. Eng. Anal. Bound. Elem. 30 4 (2006) 247-253
-
(2006)
Eng. Anal. Bound. Elem.
, vol.30
, Issue.4
, pp. 247-253
-
-
Ling, L.1
Opfer, R.2
Schaback, R.3
-
12
-
-
0002434097
-
Solving partial differential equations by collocation with radial basis functions
-
Le Méchauté A., Rabut C., and Schumaker L.L. (Eds), Vanderbilt University Press, Nashville, TN
-
Fasshauer G.E. Solving partial differential equations by collocation with radial basis functions. In: Le Méchauté A., Rabut C., and Schumaker L.L. (Eds). Proceedings of Chamonix (1996), Vanderbilt University Press, Nashville, TN 1-8
-
(1996)
Proceedings of Chamonix
, pp. 1-8
-
-
Fasshauer, G.E.1
-
13
-
-
51649133223
-
Hermite-Birkhoff interpolation of scattered data by radial basis functions
-
Wu Z. Hermite-Birkhoff interpolation of scattered data by radial basis functions. Approx. Theory 8 2 (1992) 1-11
-
(1992)
Approx. Theory
, vol.8
, Issue.2
, pp. 1-11
-
-
Wu, Z.1
-
14
-
-
0003359019
-
Solving PDE with radial basis function and the error estimation
-
Advances in Computational Mathematics. Chen Z., Li Y., Micchelli C.A., Xu Y., Dekker M., and Zhou G. (Eds)
-
Wu Z. Solving PDE with radial basis function and the error estimation. In: Chen Z., Li Y., Micchelli C.A., Xu Y., Dekker M., and Zhou G. (Eds). Advances in Computational Mathematics. Lecture Notes on Pure and Applied Mathematics 202 (1998)
-
(1998)
Lecture Notes on Pure and Applied Mathematics
, vol.202
-
-
Wu, Z.1
-
15
-
-
0037922106
-
Convergence order estimates of meshless collocation methods using radial basis functions
-
Schaback R., and Franke C. Convergence order estimates of meshless collocation methods using radial basis functions. Adv. Comput. Math. 8 4 (1998) 381-399
-
(1998)
Adv. Comput. Math.
, vol.8
, Issue.4
, pp. 381-399
-
-
Schaback, R.1
Franke, C.2
-
16
-
-
0343826593
-
The Hermite collocation method using radial basis functions
-
Jumarhon B., Amini S., and Chen K. The Hermite collocation method using radial basis functions. Eng. Anal. Bound. Elem. 24 (2000) 607-611
-
(2000)
Eng. Anal. Bound. Elem.
, vol.24
, pp. 607-611
-
-
Jumarhon, B.1
Amini, S.2
Chen, K.3
-
17
-
-
0035841939
-
A meshless method for Kirchoff plate bending problems
-
Leitao V.M.A. A meshless method for Kirchoff plate bending problems. Internat. J. Numer. Methods Engrg. (2001) 1107-1130
-
(2001)
Internat. J. Numer. Methods Engrg.
, pp. 1107-1130
-
-
Leitao, V.M.A.1
-
18
-
-
0036467964
-
A comparison analysis between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of partial differential equations
-
Power H., and Barraco V. A comparison analysis between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of partial differential equations. Comput. Math. 43 (2002) 551-583
-
(2002)
Comput. Math.
, vol.43
, pp. 551-583
-
-
Power, H.1
Barraco, V.2
-
19
-
-
0037698490
-
Some observations on unsymmetric radial basis function collocation methods for convection-diffusion problems
-
Li J., and Chen C.S. Some observations on unsymmetric radial basis function collocation methods for convection-diffusion problems. Internat. J. Numer. Methods Engrg. 57 (2003) 1085-1094
-
(2003)
Internat. J. Numer. Methods Engrg.
, vol.57
, pp. 1085-1094
-
-
Li, J.1
Chen, C.S.2
-
20
-
-
18244384205
-
Radial basis function Hermite collocation approach for the solution of time dependent convection-diffusion problems
-
La Rocca A., Hernandez A., and Power H. Radial basis function Hermite collocation approach for the solution of time dependent convection-diffusion problems. Eng. Anal. Bound. Elem. 29 (2005) 359-370
-
(2005)
Eng. Anal. Bound. Elem.
, vol.29
, pp. 359-370
-
-
La Rocca, A.1
Hernandez, A.2
Power, H.3
|