-
1
-
-
0003251449
-
New developments in the theory of positive systems
-
Datta B., and Martin G. (Eds), Birkhäuser, Boston
-
Anderson B.D.O. New developments in the theory of positive systems. In: Datta B., and Martin G. (Eds). Systems and Control in the Twenty-First Century (1997), Birkhäuser, Boston
-
(1997)
Systems and Control in the Twenty-First Century
-
-
Anderson, B.D.O.1
-
3
-
-
4344618939
-
A note on the existence of positive realizations
-
Astolfi A., and Colaneri P. A note on the existence of positive realizations. Linear Algebra Appl. 390 (2004) 329-343
-
(2004)
Linear Algebra Appl.
, vol.390
, pp. 329-343
-
-
Astolfi, A.1
Colaneri, P.2
-
4
-
-
2942530941
-
A tutorial on the positive realization problem
-
Benvenuti L., and Farina L. A tutorial on the positive realization problem. IEEE Trans. Automat. Control 49 (2004) 651-664
-
(2004)
IEEE Trans. Automat. Control
, vol.49
, pp. 651-664
-
-
Benvenuti, L.1
Farina, L.2
-
5
-
-
0035441810
-
The design of fiber-optic filters
-
Benvenuti L., and Farina L. The design of fiber-optic filters. J. Lightwave Technol. 19 (2001) 1366-1375
-
(2001)
J. Lightwave Technol.
, vol.19
, pp. 1366-1375
-
-
Benvenuti, L.1
Farina, L.2
-
6
-
-
0000660103
-
An example of how positivity may force realizations of 'large' dimensions
-
Benvenuti L., and Farina L. An example of how positivity may force realizations of 'large' dimensions. Systems Control Lett. 36 (1999) 261-266
-
(1999)
Systems Control Lett.
, vol.36
, pp. 261-266
-
-
Benvenuti, L.1
Farina, L.2
-
9
-
-
0000928778
-
On the existence of a positive realization
-
Farina L. On the existence of a positive realization. Systems Control Lett. 28 (1996) 219-226
-
(1996)
Systems Control Lett.
, vol.28
, pp. 219-226
-
-
Farina, L.1
-
11
-
-
0034396299
-
Nonnegative realizations of matrix transfer functions
-
Förster K.-H., and Nagy B. Nonnegative realizations of matrix transfer functions. Linear Algebra Appl. 311 (2000) 107-129
-
(2000)
Linear Algebra Appl.
, vol.311
, pp. 107-129
-
-
Förster, K.-H.1
Nagy, B.2
-
12
-
-
0038379341
-
Bounds on the size of minimal nonnegative realizations for discrete-time LTI systems
-
Hadjicostis C. Bounds on the size of minimal nonnegative realizations for discrete-time LTI systems. Systems Control Lett. 37 (1999) 39-43
-
(1999)
Systems Control Lett.
, vol.37
, pp. 39-43
-
-
Hadjicostis, C.1
-
13
-
-
17844394684
-
Minimal positive realizations for a class of transfer functions
-
Halmschlager A., and Matolcsi M. Minimal positive realizations for a class of transfer functions. IEEE Trans. Circuits Syst. II 52 (2005) 177-180
-
(2005)
IEEE Trans. Circuits Syst. II
, vol.52
, pp. 177-180
-
-
Halmschlager, A.1
Matolcsi, M.2
-
16
-
-
0032027932
-
Positive realization of discretetime systems by geometric approach
-
Kitano T., and Maeda H. Positive realization of discretetime systems by geometric approach. IEEE Trans. Circuits Syst. I 45 (1998) 308-311
-
(1998)
IEEE Trans. Circuits Syst. I
, vol.45
, pp. 308-311
-
-
Kitano, T.1
Maeda, H.2
-
17
-
-
0038508858
-
Algorithm for positive realization of transfer functions
-
Nagy B., and Matolcsi M. Algorithm for positive realization of transfer functions. IEEE Trans. Circuits Syst. I 50 (2003) 699-702
-
(2003)
IEEE Trans. Circuits Syst. I
, vol.50
, pp. 699-702
-
-
Nagy, B.1
Matolcsi, M.2
-
18
-
-
0037480964
-
A lower bound on the dimension of positive realizations
-
Nagy B., and Matolcsi M. A lower bound on the dimension of positive realizations. IEEE Trans. Circuits Syst. I 50 (2003) 782-784
-
(2003)
IEEE Trans. Circuits Syst. I
, vol.50
, pp. 782-784
-
-
Nagy, B.1
Matolcsi, M.2
-
19
-
-
25844486947
-
Minimal positive realizations of transfer functions with nonnegative multiple poles
-
Nagy B., and Matolcsi M. Minimal positive realizations of transfer functions with nonnegative multiple poles. IEEE Trans. Automat. Control 50 (2005) 1447-1450
-
(2005)
IEEE Trans. Automat. Control
, vol.50
, pp. 1447-1450
-
-
Nagy, B.1
Matolcsi, M.2
-
20
-
-
34247195419
-
Order bound for the realization of a combination of positive filters
-
Nagy B., Matolcsi M., and Szilvási M. Order bound for the realization of a combination of positive filters. IEEE Trans. Automat. Control 52 4 (2007) 724-729
-
(2007)
IEEE Trans. Automat. Control
, vol.52
, Issue.4
, pp. 724-729
-
-
Nagy, B.1
Matolcsi, M.2
Szilvási, M.3
-
21
-
-
0021394486
-
Reachability, observability and realizability of continuous-time positive systems
-
Ohta Y., Maeda H., and Kodama S. Reachability, observability and realizability of continuous-time positive systems. SIAM J. Control Optim. 22 (1984) 171-180
-
(1984)
SIAM J. Control Optim.
, vol.22
, pp. 171-180
-
-
Ohta, Y.1
Maeda, H.2
Kodama, S.3
-
23
-
-
33750147357
-
Minimal positive realizations of third-order systems with complex poles
-
Positive Systems, Springer, Berlin
-
Sun Y., Yu Y., Yu W., and Wang L. Minimal positive realizations of third-order systems with complex poles. Positive Systems. Lecture Notes in Control and Inform. Sci. vol. 341 (2006), Springer, Berlin 327-334
-
(2006)
Lecture Notes in Control and Inform. Sci.
, vol.341
, pp. 327-334
-
-
Sun, Y.1
Yu, Y.2
Yu, W.3
Wang, L.4
|