-
5
-
-
84987487412
-
-
b) N. P. D. Thi, S. Spichiger, P. Paglia, G. Bernardinelli, E. P. Kündig, P. L. Timms, Helv. Chim. Acta 1992, 75, 2593;
-
(1992)
Helv. Chim. Acta
, vol.75
, pp. 2593
-
-
Thi, N.P.D.1
Spichiger, S.2
Paglia, P.3
Bernardinelli, G.4
Kündig, E.P.5
Timms, P.L.6
-
6
-
-
0000142764
-
-
c) M. Pomije, C. J. Kurth, J. E. Ellis, M. V. Barybin, Organometallics 1997, 16, 3582;
-
(1997)
Organometallics
, vol.16
, pp. 3582
-
-
Pomije, M.1
Kurth, C.J.2
Ellis, J.E.3
Barybin, M.V.4
-
7
-
-
0032554021
-
-
d) M. V. Barybin, V. G. Young, Jr., J. E. Ellis, J. Am. Chem. Soc. 1998, 120, 429.
-
(1998)
J. Am. Chem. Soc
, vol.120
, pp. 429
-
-
Barybin, M.V.1
Young Jr., V.G.2
Ellis, J.E.3
-
10
-
-
0037019687
-
-
W. W. Brennessel, J. E. Ellis, M. K. Pomije, V. J. Sussman, E. Urnezius, V. G. Young, Jr., J. Am. Chem. Soc. 2002, 124, 10258.
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 10258
-
-
Brennessel, W.W.1
Ellis, J.E.2
Pomije, M.K.3
Sussman, V.J.4
Urnezius, E.5
Young Jr., V.G.6
-
11
-
-
40949154053
-
-
W. W. Brennessel, V. G. Young, Jr., J. E. Ellis, Angew. Chem. 2006, 118, 7426;
-
(2006)
Angew. Chem
, vol.118
, pp. 7426
-
-
Brennessel, W.W.1
Young Jr., V.G.2
Ellis, J.E.3
-
12
-
-
33750978452
-
-
and references therein
-
Angew. Chem. Int. Ed. 2006, 45, 7268, and references therein.
-
(2006)
Angew. Chem. Int. Ed
, vol.45
, pp. 7268
-
-
-
13
-
-
0001036577
-
-
Reactions of actual transition-metal atomic anions have been studied in the gas phase for many years and often provide remarkable transformations that have no precedent in condensed phases, see K. J. Fisher, Prog. Inorg. Chem. 2001, 50, 343
-
Reactions of actual transition-metal atomic anions have been studied in the gas phase for many years and often provide remarkable transformations that have no precedent in condensed phases, see K. J. Fisher, Prog. Inorg. Chem. 2001, 50, 343.
-
-
-
-
14
-
-
85134107358
-
-
2-: E. Urnezius, W. W. Brennessel, C. J. Cramer, J. E. Ellis, P. von R. Schleyer, Science 2002, 295, 832.
-
2-: E. Urnezius, W. W. Brennessel, C. J. Cramer, J. E. Ellis, P. von R. Schleyer, Science 2002, 295, 832.
-
-
-
-
15
-
-
40949118678
-
-
Conventional reductions of neutral organometallic compounds, obtained from metal-atom vapor syntheses, to corresponding anions are well-established procedures, for example, for the conversion of bis(1,4-di-tert-butyl-1,3- butadiene)cobalt(0) into the corresponding anion, see F. G. N. Cloke, P. B. Hitchcock, A. McCamley, J. Chem. Soc. Chem. Commun. 1993, 248. However, this indirect route to metalates is not possible when appropriate neutral precursors are very short-lived or otherwise inaccessible.
-
Conventional reductions of neutral organometallic compounds, obtained from metal-atom vapor syntheses, to corresponding anions are well-established procedures, for example, for the conversion of bis(1,4-di-tert-butyl-1,3- butadiene)cobalt(0) into the corresponding anion, see F. G. N. Cloke, P. B. Hitchcock, A. McCamley, J. Chem. Soc. Chem. Commun. 1993, 248. However, this indirect route to metalates is not possible when appropriate neutral precursors are very short-lived or otherwise inaccessible.
-
-
-
-
16
-
-
0001579454
-
-
C. G. Dewey, J. E. Ellis, K. L. Fjare, K. M. Pfahl, G. F. Warnock, Organometallics 1983, 2, 388.
-
(1983)
Organometallics
, vol.2
, pp. 388
-
-
Dewey, C.G.1
Ellis, J.E.2
Fjare, K.L.3
Pfahl, K.M.4
Warnock, G.F.5
-
17
-
-
0000675375
-
-
a) M. V. Barybin, J. E. Ellis, M. K. Pomije, M. L. Tinkham, G. F. Warnock, Inorg. Chem. 1998, 37, 6518;
-
(1998)
Inorg. Chem
, vol.37
, pp. 6518
-
-
Barybin, M.V.1
Ellis, J.E.2
Pomije, M.K.3
Tinkham, M.L.4
Warnock, G.F.5
-
18
-
-
40949097482
-
-
PhD Thesis, University of Minnesota
-
b) V. J. Sussman, PhD Thesis, University of Minnesota, 2007.
-
(2007)
-
-
Sussman, V.J.1
-
19
-
-
0344708860
-
-
a) F. Calderazzo, G. Pampaloni, L. Rocchi, J. Strähle, K. Wurst, Angew. Chem. 1991, 103, 109;
-
(1991)
Angew. Chem
, vol.103
, pp. 109
-
-
Calderazzo, F.1
Pampaloni, G.2
Rocchi, L.3
Strähle, J.4
Wurst, K.5
-
21
-
-
0002308224
-
-
b) F. Calderazzo, G. Pampaloni, L. Rocchi, J. Strähle, K. Würst, J. Organomet. Chem. 1991, 413, 91;
-
(1991)
J. Organomet. Chem
, vol.413
, pp. 91
-
-
Calderazzo, F.1
Pampaloni, G.2
Rocchi, L.3
Strähle, J.4
Würst, K.5
-
23
-
-
0036404865
-
-
d) W. W. Brennessel, J. E. Ellis, S. N. Roush, B. R. Standberg, O. E. Woisetschläger, V. G. Young, Jr., Chem. Commun. 2002, 2356.
-
(2002)
Chem. Commun
, pp. 2356
-
-
Brennessel, W.W.1
Ellis, J.E.2
Roush, S.N.3
Standberg, B.R.4
Woisetschläger, O.E.5
Young Jr., V.G.6
-
25
-
-
0011511481
-
-
b) K. Jonas, W. Rüsseler, C. Krüger, E. Raabe, Angew. Chem. 1986, 98, 902;
-
(1986)
Angew. Chem
, vol.98
, pp. 902
-
-
Jonas, K.1
Rüsseler, W.2
Krüger, C.3
Raabe, E.4
-
27
-
-
0000803687
-
-
c) M. N. Bochkarev, I. L. Fedushkin, H. Schumann, J. Loebel, J. Organomet. Chem. 1991, 410, 321;
-
(1991)
J. Organomet. Chem
, vol.410
, pp. 321
-
-
Bochkarev, M.N.1
Fedushkin, I.L.2
Schumann, H.3
Loebel, J.4
-
28
-
-
0002495607
-
-
d) M. N. Bochkarev, I. L. Fedushkin, V. K. Cherkasov, V. I. Nevodchikov, H. Schumann, F. J. Görlitz, Inorg. Chim. Acta 1992, 201, 69.
-
(1992)
Inorg. Chim. Acta
, vol.201
, pp. 69
-
-
Bochkarev, M.N.1
Fedushkin, I.L.2
Cherkasov, V.K.3
Nevodchikov, V.I.4
Schumann, H.5
Görlitz, F.J.6
-
29
-
-
0006161161
-
-
J. O. Albright, S. Datta, B. Dezube, J. K. Kouba, D. S. Marynick, S. S. Wreford, B. M. Foxman, J. Am. Chem. Soc. 1979, 101, 611.
-
(1979)
J. Am. Chem. Soc
, vol.101
, pp. 611
-
-
Albright, J.O.1
Datta, S.2
Dezube, B.3
Kouba, J.K.4
Marynick, D.S.5
Wreford, S.S.6
Foxman, B.M.7
-
31
-
-
40949156841
-
-
For example, the JC1,C4-H values for 1 [5, Zr(η4-C10H8) 3]2-[4, and 3 are 155, 151, and 146 and 141 Hz, respectively, where two values are shown for 3 because of the inequivalence of the outer diene carbon atoms (C1, C11, and C4, C14) in solution and in the solid state. The lower JC-H coupling constants for these carbon atoms in 3 indicate that they have more sp3 hybrid character than the corresponding carbon atoms of 1 and the zirconate complex. Also, the average δC1/C4 value for 3, 57.3 ppm, is shifted upfield relative to the corresponding values for 1, 61.5, and the zirconate, 64.2 ppm, another measure of the very electron rich character of the niobium center
-
3 hybrid character than the corresponding carbon atoms of 1 and the zirconate complex. Also, the average δC1/C4 value for 3, 57.3 ppm, is shifted upfield relative to the corresponding values for 1, 61.5, and the zirconate, 64.2 ppm, another measure of the very electron rich character of the niobium center.
-
-
-
-
32
-
-
40949118677
-
-
Crystal data for [Na([2.2.2]cryptand, 3, C44H 70N2NaNbO6P2, Mr, 900.86, monoclinic, space group P21, red-orange wedge, a, 15.772(2, b, 17.932(2, c, 17.533(2) Å, β, 114.297(2)°, V, 4519.6(8) Å3, Z, 4, T, 173(2) K, λ, 0.71073 Å, 52728 reflections, 20246 independent, R1, 0.0356 (I > 2σ(I, wR2, 0.0796 (for all data, μ, 0.394 mm-1 (SADABS, full-matrix least-squares refinement on F2. CCDC 657037 (3, 649039 (4, and 649040 (5) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via
-
2. CCDC 657037 (3), 649039 (4), and 649040 (5) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/datarequest/cif.
-
-
-
-
33
-
-
40949137546
-
-
[5] respectively.
-
[5] respectively.
-
-
-
-
34
-
-
40949151722
-
-
4-naphthalene, and/or on the metal center, for example, organophosphane groups. For example, the average outer M-C1/C4 and inner M-C2/C3 bond lengths in 3 are 2.40(1) and 2.282(6), whereas the corresponding values for Wreford's tantalum naphthalene complex are 2.39(3) and 2.25(1) Å, respectively.
-
4-naphthalene, and/or on the metal center, for example, organophosphane groups. For example, the average outer M-C1/C4 and inner M-C2/C3 bond lengths in 3 are 2.40(1) and 2.282(6), whereas the corresponding values for Wreford's tantalum naphthalene complex are 2.39(3) and 2.25(1) Å, respectively.
-
-
-
-
35
-
-
40949132241
-
-
[6]
-
[6]
-
-
-
-
36
-
-
40949084894
-
-
A. J. Deeming, Comprehensive Organometallic Chemistry (Eds.: G. Wilkinson, F. G. A. Stone, E. W. Abel), Pergamon, New York, 1982, chap. 31.3, section 31.3.3.8. Although this discussion deals with structural and spectroscopic properties of iron-diene complexes, the conclusions are applicable to complexes of other transition-metal-dienes.
-
A. J. Deeming, Comprehensive Organometallic Chemistry (Eds.: G. Wilkinson, F. G. A. Stone, E. W. Abel), Pergamon, New York, 1982, chap. 31.3, section 31.3.3.8. Although this discussion deals with structural and spectroscopic properties of iron-diene complexes, the conclusions are applicable to complexes of other transition-metal-dienes.
-
-
-
-
37
-
-
0001540320
-
-
Similar red-shifting in the color of carbonylmetalates has been reported to occur when alkali-metal ions are replaced by PPN+ ions and are attributed to anion-PPN+ charge transfer, see M. Tilset, A. A. Zlota, K. Foltung, K. G. Caulton, J. Am. Chem. Soc. 1993, 115, 4113. Note that the NMR spectra of 4 and 5 are independent of the cation see later, thus, anion-PPN+ interactions appear to have no significant effect on the molecular or electronic structures of these anions
-
+ interactions appear to have no significant effect on the molecular or electronic structures of these anions.
-
-
-
-
38
-
-
40949100588
-
-
Novel dilithio compounds [Li(tmeda)]2[M(C4H 6)3, tmeda, Me2NCH2CH 2NMe2) apparently only known in solution, were claimed on the basis of IR and NMR spectroscopic studies to contain an η4-bonded as well as two η4-bonded C 4H6 ligands, but no physical data or other information to support these formulations have been published in the scientific literature to date, see W. Gausing, G. Wilke, Angew. Chem. 1981, 93, 201;
-
6 ligands," but no physical data or other information to support these formulations have been published in the scientific literature to date, see W. Gausing, G. Wilke, Angew. Chem. 1981, 93, 201;
-
-
-
-
40
-
-
0000237982
-
-
a) P. S. Skell, E. M. Van Dam, M. P. Silvon, J. Am. Chem. Soc. 1974, 96, 626;
-
(1974)
J. Am. Chem. Soc
, vol.96
, pp. 626
-
-
Skell, P.S.1
Van Dam, E.M.2
Silvon, M.P.3
-
43
-
-
0001493095
-
-
a) J. C. Green, M. R. Kelly, P. D. Grebenik, C. E. Briant, N. A. McEvoy, D. M. P. Mingos, J. Organomet. Chem. 1982, 228, 239;
-
(1982)
J. Organomet. Chem
, vol.228
, pp. 239
-
-
Green, J.C.1
Kelly, M.R.2
Grebenik, P.D.3
Briant, C.E.4
McEvoy, N.A.5
Mingos, D.M.P.6
-
44
-
-
0037662113
-
-
b) M. Kaupp, T. Kopf, A. Murso, D. Stalke, C. Strohmann, J. R. Hanks, F. G. N. Cloke, P. B. Hitchcock, Organometallics 2002, 21, 5021.
-
(2002)
Organometallics
, vol.21
, pp. 5021
-
-
Kaupp, M.1
Kopf, T.2
Murso, A.3
Stalke, D.4
Strohmann, C.5
Hanks, J.R.6
Cloke, F.G.N.7
Hitchcock, P.B.8
-
46
-
-
21144450428
-
-
b) G. Erker, G. Kehr, R. Froelich, Adv. Organomet. Chem. 2004, 51, 109.
-
(2004)
Adv. Organomet. Chem
, vol.51
, pp. 109
-
-
Erker, G.1
Kehr, G.2
Froelich, R.3
-
47
-
-
0005238266
-
-
a) W. Beck, Angew. Chem. 1991, 103, 173;
-
(1991)
Angew. Chem
, vol.103
, pp. 173
-
-
Beck, W.1
-
49
-
-
0042326190
-
-
and references therein
-
b) J. E. Ellis, Organometallics 2003, 22, 3322, and references therein.
-
(2003)
Organometallics
, vol.22
, pp. 3322
-
-
Ellis, J.E.1
-
52
-
-
40949157264
-
-
W. W. Brennessel, R. E. Jilek, J. E. Ellis, Angew. Chem. 2007, 119, 6244;
-
(2007)
Angew. Chem
, vol.119
, pp. 6244
-
-
Brennessel, W.W.1
Jilek, R.E.2
Ellis, J.E.3
-
54
-
-
0000911849
-
-
B. Bogdanovic, H. Bonnemann, R. Goddard, A. Startsev, J. M. Wallis, J. Organomet. Chem. 1986, 299, 347.
-
(1986)
J. Organomet. Chem
, vol.299
, pp. 347
-
-
Bogdanovic, B.1
Bonnemann, H.2
Goddard, R.3
Startsev, A.4
Wallis, J.M.5
-
55
-
-
40949137999
-
-
C-H data for 4.
-
C-H data for 4.
-
-
-
-
56
-
-
40949088288
-
-
[29] and 156 Hz, respectively. For the last value, see J. B. Strothers, Carbon-13 NMR Spectroscopy, Academic Press, New York, 1972.
-
[29] and 156 Hz, respectively. For the last value, see J. B. Strothers, Carbon-13 NMR Spectroscopy, Academic Press, New York, 1972.
-
-
-
-
57
-
-
40949146266
-
-
Crystal data for, Na(dibenzo[18]crown-6)(thf)2][4, 2](thf, C84H124Na2Nb 2O17, Mr, 1637.63, monoclinic, space group P21/c, colorless plate, a, 19.932(3, b, 21.155(3, c, 19.842(2) Å, β, 97.165(2)°, V, 8301(2) Å3, Z, 4, T =173(2 K, λ=0.71073 Å, 94 283 reflections, 18 912 independent, R1=0.0409, wR2, 0.1176 (for all data, μ, 0.351 mm -1 (SADABS, full-matrix least-square refinement on F 2; b) Crystal data for, Na-(dibenzo[18]crown-6)(thf) 2][5]}2](THF, C84H124Na 2O17Ta2, Mr= 1813.71, monoclinic, space group P21/c, colorless plate. a, 19.945(3, b, 21.1713, c, 19.829
-
2. See reference [17] for CCDC numbers and related information.
-
-
-
-
58
-
-
40949112062
-
-
Details on the X-ray studies of the [PPN, salts of 4 and 5 will be described elsewhere: V. J. Sussman, J. E. Ellis, unpublished results. Crystal data for [PPN][4, C48H 48NNbP2, Mr, 793.72, monoclinic, space group P21/n, orange needle, a, 13.716(3, b, 17.213(3, c, 16.658(3) Å, β, 90.217(3)°, V, 3933(1) Å3, Z, 4, T, 123(2 K, wR2 (all data, 0.0834 with GOF on F2 of 1.050. Crystal data for [PPN][5, C48H48NP 2Ta, Mr, 881.76, monoclinic, space group P21/n, orange plate, a, 13.734(4, b, 17.263(5, c, 16.638(5) Å, β, 90.218(3)°, V, 3945(2) Å3, Z, 4, T, 123(2) K, wR2 all data, 0.0675 with GOF on F
-
2 of 1.012.
-
-
-
-
59
-
-
40949149985
-
-
For example, in 5 the average outer and inner M-C bonds are 2.297(11) and 2.406(9) Å, respectively, whereas the corresponding values for 6 are 2.285(2) and 2.325(2) Å; b) for 5, the average outer and inner C-C bond lengths are 1.44(1) and 1.36(1) Å, respectively, whereas analogous values for 6 are 1.414(4) and 1.403(5). The corresponding average M-C and C-C bond lengths for niobate 4 are close to those of 5, but suggest that the niobium functions as a slightly weaker π donor than does tantalum in these complexes.
-
a) For example, in 5 the average outer and inner M-C bonds are 2.297(11) and 2.406(9) Å, respectively, whereas the corresponding values for 6 are 2.285(2) and 2.325(2) Å; b) for 5, the average outer and inner C-C bond lengths are 1.44(1) and 1.36(1) Å, respectively, whereas analogous values for 6 are 1.414(4) and 1.403(5). The corresponding average M-C and C-C bond lengths for niobate 4 are close to those of 5, but suggest that the niobium functions as a slightly weaker π donor than does tantalum in these complexes.
-
-
-
-
60
-
-
0031693561
-
-
S. Kleinhenz, V. Pfennig, K. Seppelt, Chem. Eur. J. 1998, 4, 1687.
-
(1998)
Chem. Eur. J
, vol.4
, pp. 1687
-
-
Kleinhenz, S.1
Pfennig, V.2
Seppelt, K.3
-
61
-
-
0007073486
-
-
S. K. Kang, T. A. Albright, O. Eisenstein, Inorg. Chem. 1989, 28, 1613.
-
(1989)
Inorg. Chem
, vol.28
, pp. 1613
-
-
Kang, S.K.1
Albright, T.A.2
Eisenstein, O.3
-
63
-
-
3643132082
-
-
b) P. R. Brown, M. L. H. Green, P. M. Hare, J. A. Bandy, Polyhedron 1988, 7, 1819.
-
(1988)
Polyhedron
, vol.7
, pp. 1819
-
-
Brown, P.R.1
Green, M.L.H.2
Hare, P.M.3
Bandy, J.A.4
|