메뉴 건너뛰기




Volumn 77, Issue 3, 2008, Pages

Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators

Author keywords

[No Author keywords available]

Indexed keywords

CONTINUUM MECHANICS; PHASE TRANSITIONS; PROBLEM SOLVING; SYNCHRONIZATION;

EID: 40949141817     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.77.031114     Document Type: Article
Times cited : (17)

References (18)
  • 5
    • 0039592729 scopus 로고    scopus 로고
    • PDNPDT 0167-2789 10.1016/S0167-2789(00)00094-4
    • S. Strogatz, Physica D PDNPDT 0167-2789 10.1016/S0167-2789(00)00094-4 143, 1 (2000).
    • (2000) Physica D , vol.143 , pp. 1
    • Strogatz, S.1
  • 6
    • 19944385353 scopus 로고    scopus 로고
    • RMPHAT 0034-6861 10.1103/RevModPhys.77.137
    • J. Acebron, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.77.137 77, 137 (2005).
    • (2005) Rev. Mod. Phys. , vol.77 , pp. 137
    • Acebron, J.1
  • 9
    • 0343910095 scopus 로고    scopus 로고
    • PRVDAQ 0556-2821 10.1103/PhysRevD.58.073002
    • J. Pantaleone, Phys. Rev. D PRVDAQ 0556-2821 10.1103/PhysRevD.58.073002 58, 073002 (1998).
    • (1998) Phys. Rev. D , vol.58 , pp. 073002
    • Pantaleone, J.1
  • 10
    • 0037205032 scopus 로고    scopus 로고
    • SCIEAS 0036-8075 10.1126/science.1070757
    • I. Kiss, Y. Zhai, and J. Hudson, Science SCIEAS 0036-8075 10.1126/science.1070757 296, 1676 (2002).
    • (2002) Science , vol.296 , pp. 1676
    • Kiss, I.1    Zhai, Y.2    Hudson, J.3
  • 11
    • 40949103760 scopus 로고    scopus 로고
    • The synchronization analysis of amplitude oscillators in this paper differs from analyses that incorporate cubic nonlinearities (see, for example, and) in that here we consider phase, not amplitude, synchronization. Whereas in these other models the amplitude order parameter ρ (1/N) | j=1 N ψj | = (1/N) | j=1 N Rj ei θj | has an upper bound of 1 and is used as a measure of amplitude synchronization, in the present model ρ has no upper bound and the amplitude is not a free variable. Furthermore, in the linear model presented in this paper the amplitude decays for systems of uncoupled oscillators, unlike in the models with cubic nonlinearities.
    • The synchronization analysis of amplitude oscillators in this paper differs from analyses that incorporate cubic nonlinearities (see, for example, and) in that here we consider phase, not amplitude, synchronization. Whereas in these other models the amplitude order parameter ρ (1/N) | j=1 N ψj | = (1/N) | j=1 N Rj ei θj | has an upper bound of 1 and is used as a measure of amplitude synchronization, in the present model ρ has no upper bound and the amplitude is not a free variable. Furthermore, in the linear model presented in this paper the amplitude decays for systems of uncoupled oscillators, unlike in the models with cubic nonlinearities.
  • 12
    • 34147192429 scopus 로고
    • JSTPBS 0022-4715 10.1007/BF01013676
    • R. Mirollo and S. Strogatz, J. Stat. Phys. JSTPBS 0022-4715 10.1007/BF01013676 60, 245 (1990).
    • (1990) J. Stat. Phys. , vol.60 , pp. 245
    • Mirollo, R.1    Strogatz, S.2
  • 13
    • 0345945837 scopus 로고
    • PDNPDT 0167-2789 10.1016/0167-2789(91)90129-W
    • P. Matthews, R. Mirollo, and S. H. Strogatz, Physica D PDNPDT 0167-2789 10.1016/0167-2789(91)90129-W 52, 293 (1991)
    • (1991) Physica D , vol.52 , pp. 293
    • Matthews, P.1    Mirollo, R.2    Strogatz, S.H.3
  • 14
    • 0000918668 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.65.1701
    • P. C. Matthews and S. H. Strogatz, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.65.1701 65, 1701 (1990).
    • (1990) Phys. Rev. Lett. , vol.65 , pp. 1701
    • Matthews, P.C.1    Strogatz, S.H.2
  • 15
    • 1542499302 scopus 로고
    • JSTPBS 0022-4715 10.1007/BF01029202
    • S. H. Strogatz and R. Mirollo, J. Stat. Phys. JSTPBS 0022-4715 10.1007/BF01029202 63, 613 (1991).
    • (1991) J. Stat. Phys. , vol.63 , pp. 613
    • Strogatz, S.H.1    Mirollo, R.2
  • 16
    • 40949165564 scopus 로고    scopus 로고
    • Uniformly coupled continuum systems-those that have an analytic Kuramoto solution Eq. 3 -with uniform characteristic frequency distributions also exhibit this absence of partially locked states.
    • Uniformly coupled continuum systems-those that have an analytic Kuramoto solution Eq. 3 -with uniform characteristic frequency distributions also exhibit this absence of partially locked states.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.