-
2
-
-
0000083715
-
Optimal Bayesian design applied to logistic regression experiments
-
Chaloner K., and Larntz K. Optimal Bayesian design applied to logistic regression experiments. J. Statist. Plann. Inference 21 (1989) 191-208
-
(1989)
J. Statist. Plann. Inference
, vol.21
, pp. 191-208
-
-
Chaloner, K.1
Larntz, K.2
-
3
-
-
0001653224
-
Locally optimal design for estimating parameters
-
Chernoff H. Locally optimal design for estimating parameters. Ann. Math. Statist. 24 (1953) 586-602
-
(1953)
Ann. Math. Statist.
, vol.24
, pp. 586-602
-
-
Chernoff, H.1
-
4
-
-
0031570184
-
Bayesian D-optimal designs for exponential regression models
-
Dette H., and Neugebauer H.-M. Bayesian D-optimal designs for exponential regression models. J. Statist. Plann. Inference 60 (1997) 331-349
-
(1997)
J. Statist. Plann. Inference
, vol.60
, pp. 331-349
-
-
Dette, H.1
Neugebauer, H.-M.2
-
5
-
-
24344507298
-
Optimal designs for a class of nonlinear regression models
-
Dette H., Melas V.B., and Pepelyshev A. Optimal designs for a class of nonlinear regression models. Ann. Statist. 32 (2004) 2142-2167
-
(2004)
Ann. Statist.
, vol.32
, pp. 2142-2167
-
-
Dette, H.1
Melas, V.B.2
Pepelyshev, A.3
-
6
-
-
0027564539
-
Some general estimation methods for nonlinear mixed-effects models
-
Davidian M., and Giltinan D.M. Some general estimation methods for nonlinear mixed-effects models. J. Biopharm. Statist. 3 (1993) 23-55
-
(1993)
J. Biopharm. Statist.
, vol.3
, pp. 23-55
-
-
Davidian, M.1
Giltinan, D.M.2
-
9
-
-
0000251072
-
The use of a canonical form in the construction of locally optimal designs for non-linear problems
-
Ford I., Torsney B., and Wu C.F.J. The use of a canonical form in the construction of locally optimal designs for non-linear problems. J. Roy. Statist. Soc. Ser. B 54 (1992) 569-583
-
(1992)
J. Roy. Statist. Soc. Ser. B
, vol.54
, pp. 569-583
-
-
Ford, I.1
Torsney, B.2
Wu, C.F.J.3
-
10
-
-
0038578418
-
D- and c-optimal designs for exponential regression models used in viral dynamics and other applications
-
Han C., and Chaloner K. D- and c-optimal designs for exponential regression models used in viral dynamics and other applications. J. Statist. Plann. Inference 115 (2003) 585-601
-
(2003)
J. Statist. Plann. Inference
, vol.115
, pp. 585-601
-
-
Han, C.1
Chaloner, K.2
-
11
-
-
21744435230
-
Modeling and identifying optimum designs for fitting dose-response curves based on raw optical density data
-
Hedayat A., Yan B., and Pezzuto J.M. Modeling and identifying optimum designs for fitting dose-response curves based on raw optical density data. J. Amer. Statist. Assoc. 92 (1997) 1132-1140
-
(1997)
J. Amer. Statist. Assoc.
, vol.92
, pp. 1132-1140
-
-
Hedayat, A.1
Yan, B.2
Pezzuto, J.M.3
-
13
-
-
0000981128
-
General equivalence theory for optimum designs (approximate theory)
-
Kiefer J. General equivalence theory for optimum designs (approximate theory). Ann. Statist. 2 (1974) 849-879
-
(1974)
Ann. Statist.
, vol.2
, pp. 849-879
-
-
Kiefer, J.1
-
14
-
-
0001112787
-
The equivalence of two extremum problems
-
Kiefer J., and Wolfowitz J. The equivalence of two extremum problems. Canad. J. Math. 12 (1960) 363-366
-
(1960)
Canad. J. Math.
, vol.12
, pp. 363-366
-
-
Kiefer, J.1
Wolfowitz, J.2
-
18
-
-
0009783849
-
A note on D-optimal designs for a logistic regression model
-
Sebastiani P., and Settimi R. A note on D-optimal designs for a logistic regression model. J. Statist. Plann. Inference 59 (1997) 359-368
-
(1997)
J. Statist. Plann. Inference
, vol.59
, pp. 359-368
-
-
Sebastiani, P.1
Settimi, R.2
-
20
-
-
0001506741
-
Optimal designs for binary response experiments
-
Sitter R.R., and Wu C.F.J. Optimal designs for binary response experiments. Scand. J. Statist. 20 (1993) 329-341
-
(1993)
Scand. J. Statist.
, vol.20
, pp. 329-341
-
-
Sitter, R.R.1
Wu, C.F.J.2
-
21
-
-
85041933023
-
An extension of the general equivalence theorem to nonlinear models
-
White L. An extension of the general equivalence theorem to nonlinear models. Biometrika 60 (1973) 345-348
-
(1973)
Biometrika
, vol.60
, pp. 345-348
-
-
White, L.1
-
23
-
-
0000529562
-
Some general points in the theory of optimal experimental design
-
Whittle P. Some general points in the theory of optimal experimental design. J. Roy. Statist. Soc. Ser. B 35 (1973) 123-130
-
(1973)
J. Roy. Statist. Soc. Ser. B
, vol.35
, pp. 123-130
-
-
Whittle, P.1
|