메뉴 건너뛰기




Volumn 19, Issue 2, 2008, Pages 191-201

A neural network job-shop scheduler

Author keywords

Artificial neural networks; Genetic algorithms; Job shop; Machine learning; Scheduling

Indexed keywords

GENETIC ALGORITHMS; JOB ANALYSIS; LEARNING SYSTEMS; SCHEDULING;

EID: 40849126576     PISSN: 09565515     EISSN: 15728145     Source Type: Journal    
DOI: 10.1007/s10845-008-0073-9     Document Type: Article
Times cited : (90)

References (30)
  • 1
    • 0023977010 scopus 로고
    • The shifting bottleneck procedure for job shop scheduling
    • 3
    • Adams J., Balas E., Zawack D. (1988). The shifting bottleneck procedure for job shop scheduling. Management Science 34(3): 391-401
    • (1988) Management Science , vol.34 , pp. 391-401
    • Adams, J.1    Balas, E.2    Zawack, D.3
  • 2
    • 27144483384 scopus 로고    scopus 로고
    • Improvement heuristic for the flow-shop scheduling problem: An adaptive-learning approach
    • 3
    • Agarwal A., Colak S., Eryarsoy E. (2006). Improvement heuristic for the flow-shop scheduling problem: An adaptive-learning approach. European Journal of Operational Research 169(3): 801-815
    • (2006) European Journal of Operational Research , vol.169 , pp. 801-815
    • Agarwal, A.1    Colak, S.2    Eryarsoy, E.3
  • 8
    • 0001947856 scopus 로고
    • Probabilistic learning combinations of local job-shop scheduling rules
    • Englewood Cliffs New Jersy, Prentice Hall
    • Fisher H., Thompson G.L. (1963). Probabilistic learning combinations of local job-shop scheduling rules. In: Muth J.F., Thompson G.L. (eds) Industrial scheduling. Englewood Cliffs New Jersy, Prentice Hall, pp. 225-251
    • (1963) Industrial Scheduling. , pp. 225-251
    • Fisher, H.1    Thompson, G.L.2    Muth, J.F.3    Thompson, G.L.4
  • 10
    • 0024122470 scopus 로고
    • Integer linear programming neural networks for job-shop scheduling
    • San Diego, California, July 24-27
    • Foo, Y. S., & Takefuji, T. (1988). Integer linear programming neural networks for job-shop scheduling. IEEE International Conference on Neural Networks, San Diego, California, July 24-27 (Vol. 2, pp. 341-348).
    • (1988) IEEE International Conference on Neural Networks , vol.2 , pp. 341-348
    • Foo, Y.S.1    Takefuji, T.2
  • 11
    • 0029294452 scopus 로고
    • Scaling properties of neural networks for job-shop scheduling
    • 1
    • Foo S.Y., Takefuji Y., Szu H. (1995). Scaling properties of neural networks for job-shop scheduling. Neurocomputing 8(1): 79-91
    • (1995) Neurocomputing , vol.8 , pp. 79-91
    • Foo, S.Y.1    Takefuji, Y.2    Szu, H.3
  • 13
    • 0000131281 scopus 로고
    • Algorithms for solving production-scheduling problems
    • 4
    • Giffler B., Thompson G.L. (1960). Algorithms for solving production-scheduling problems. Operations Research 8(4): 487-503
    • (1960) Operations Research , vol.8 , pp. 487-503
    • Giffler, B.1    Thompson, G.L.2
  • 14
    • 40849101718 scopus 로고    scopus 로고
    • Paper presented at the Proceedings of the IMS'96 First Symposium on Intelligent Manufacturing Systems Conference, Adapazari, Turkey, May 30-31
    • Jain, A. S., & Meeran, S. (1996). Scheduling a job-shop using a modified back-error propagation neural network. Paper presented at the Proceedings of the IMS'96 First Symposium on Intelligent Manufacturing Systems Conference, Adapazari, Turkey, May 30-31 (pp. 462-474).
    • (1996) Scheduling A Job-shop Using A Modified Back-error Propagation Neural Network , pp. 462-474
    • Jain, A.S.1    Meeran, S.2
  • 17
    • 0034294996 scopus 로고    scopus 로고
    • Using data mining to find patterns in genetic algorithm solutions to a job shop schedule
    • 3
    • Koonce D.A., Tsai S.-C. (2000). Using data mining to find patterns in genetic algorithm solutions to a job shop schedule. Computers and Industrial Engineering 38(3): 361-374
    • (2000) Computers and Industrial Engineering , vol.38 , pp. 361-374
    • Koonce, D.A.1    Tsai, S.-C.2
  • 21
    • 0024884673 scopus 로고
    • Using hybrid neural networks/expert systems for intelligent scheduling in flexible manufacturing systems
    • June 18-22, Washington
    • Rabelo, L. C., & Alptekin, S. (1989). Using hybrid neural networks/expert systems for intelligent scheduling in flexible manufacturing systems. In IJCNN: International Joint Conference on Neural Networks, June 18-22, Washington (Vol. 2, 608 pp).
    • (1989) IJCNN: International Joint Conference on Neural Networks , vol.2
    • Rabelo, L.C.1    Alptekin, S.2
  • 22
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. (1986). Learning representations by back-propagating errors. Nature 323: 533-536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 23
    • 30044441881 scopus 로고    scopus 로고
    • Using distributed genetic algorithms for solving job shop scheduling problems
    • Houston, TX
    • Shah, N., & Koonce, D. A. (2004). Using distributed genetic algorithms for solving job shop scheduling problems. In Proceedings of the IIE 2004 Annual Conference, Houston, TX.
    • (2004) Proceedings of the IIE 2004 Annual Conference
    • Shah, N.1    Koonce, D.A.2
  • 24
    • 40849124882 scopus 로고    scopus 로고
    • Application of space search tools in intelligent manufacturing planning
    • May 18-20, Portland, OR
    • Sormaz, D. N. (2003). Application of space search tools in intelligent manufacturing planning. In Industrial Engineering Research Conference, May 18-20, Portland, OR.
    • (2003) Industrial Engineering Research Conference
    • Sormaz, D.N.1
  • 26
    • 0028387642 scopus 로고
    • Neural networks: Applications in industry, business and science
    • 3
    • Widrow B., Rumelhart D.E., Lehr M.A. (1994). Neural networks: Applications in industry, business and science. Communications of the ACM 37(3): 93-105
    • (1994) Communications of the ACM , vol.37 , pp. 93-105
    • Widrow, B.1    Rumelhart, D.E.2    Lehr, M.A.3
  • 27
    • 0000086539 scopus 로고
    • A genetic algorithm applicable to large-scale job-shop instances
    • North-Holland Amsterdam
    • Yamada T., Nakano R. (1992). A genetic algorithm applicable to large-scale job-shop instances. In: Manner R., Manderick B. (eds) Parallel instance solving from nature 2. Amsterdam, North-Holland, pp. 281-290
    • (1992) Parallel Instance Solving from Nature 2 , pp. 281-290
    • Yamada, T.1    Nakano, R.2    Manner, R.3    Manderick, B.4
  • 28
    • 0345353119 scopus 로고    scopus 로고
    • Job-shop scheduling
    • A. M. S. Zalzala & P. J. Fleming (Eds.) The Institution of Electrical Engineers
    • Yamada, T., & Nakano, R. (1997). Job-shop scheduling. In A. M. S. Zalzala & P. J. Fleming (Eds.), Genetic algorithms in engineering systems (pp. 134-160). The Institution of Electrical Engineers.
    • (1997) Genetic Algorithms in Engineering Systems , pp. 134-160
    • Yamada, T.1    Nakano, R.2
  • 29
    • 0033742040 scopus 로고    scopus 로고
    • Constraint satisfaction adaptive neural network and heuristics combined approaches for generalized job-shop scheduling
    • 2
    • Yang S., Wang D. (2000). Constraint satisfaction adaptive neural network and heuristics combined approaches for generalized job-shop scheduling. IEEE Transactions on Neural Networks 11(2): 474-486
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 474-486
    • Yang, S.1    Wang, D.2
  • 30
    • 0035309164 scopus 로고    scopus 로고
    • Neural network and genetic algorithm-based hybrid approach to expanded job-shop scheduling
    • 3-4
    • Yu H., Liang W. (2001). Neural network and genetic algorithm-based hybrid approach to expanded job-shop scheduling. Computers and Industrial Engineering 39(3-4): 337-356
    • (2001) Computers and Industrial Engineering , vol.39 , pp. 337-356
    • Yu, H.1    Liang, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.