메뉴 건너뛰기




Volumn , Issue , 2006, Pages

Capturing the dynamics of multivariate time series through visualization using generative topographic mapping through time

Author keywords

Clustering; Data visualization; Generative Topographic Mapping; Multivariate time series analysis; Topologyconstrained hidden Markov models

Indexed keywords

CLUSTERING ALGORITHMS; DATA VISUALIZATION; HIDDEN MARKOV MODELS; PROBABILITY; SUPERVISED LEARNING; TIME SERIES ANALYSIS;

EID: 40849113339     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (5)

References (18)
  • 1
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • G. Zhang, B. Patuwo, and M. Hu, "Forecasting with artificial neural networks: the state of the art," Int. J. of Forecasting, vol. 14, no. 1, pp. 35-62, 1998.
    • (1998) Int. J. of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Patuwo, B.2    Hu, M.3
  • 3
    • 0027187261 scopus 로고
    • The temporal Kohonen map
    • G. Chappel and J. Taylor, "The temporal Kohonen map," Neural Networks, vol. 6, pp. 441-445, 1993.
    • (1993) Neural Networks , vol.6 , pp. 441-445
    • Chappel, G.1    Taylor, J.2
  • 4
    • 15844418774 scopus 로고    scopus 로고
    • Merge SOM for temporal data
    • M. Strickert and B. Hammer, "Merge SOM for temporal data," Neurocomputing, vol. 64, pp. 39-71, 2005.
    • (2005) Neurocomputing , vol.64 , pp. 39-71
    • Strickert, M.1    Hammer, B.2
  • 5
    • 0035272084 scopus 로고    scopus 로고
    • Self-organizing mixture networks for probability density estimation
    • H. Yin and N. Allinson, "Self-organizing mixture networks for probability density estimation," IEEE T. Neural Networks, vol. 12, pp. 405-411, 2001.
    • (2001) IEEE T. Neural Networks , vol.12 , pp. 405-411
    • Yin, H.1    Allinson, N.2
  • 6
    • 0036825530 scopus 로고    scopus 로고
    • On the generative probability density model in the Self-Organizing Map
    • T. Kostiainen and J. Lampinen, "On the generative probability density model in the Self-Organizing Map," Neurocomputing, vol. 48, no. 1-4, pp. 217-228, 2002.
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 217-228
    • Kostiainen, T.1    Lampinen, J.2
  • 7
    • 0347963789 scopus 로고    scopus 로고
    • GTM: The Generative Topographic Mapping
    • C. Bishop, M. Svensen, and C. Williams, "GTM: The Generative Topographic Mapping," Neural Comput., vol. 10, no. 1, pp. 215-234, 1998.
    • (1998) Neural Comput , vol.10 , Issue.1 , pp. 215-234
    • Bishop, C.1    Svensen, M.2    Williams, C.3
  • 8
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • J. Vesanto, "SOM-based data visualization methods," Intelligent Data Analysis, vol. 3, no. 2, pp. 111-126, 1999.
    • (1999) Intelligent Data Analysis , vol.3 , Issue.2 , pp. 111-126
    • Vesanto, J.1
  • 10
    • 84965063004 scopus 로고
    • An inequality with applications to statistical estimation for probabilistic functions for a Markov process and to a model for ecology
    • L. Baum and J. Egon, "An inequality with applications to statistical estimation for probabilistic functions for a Markov process and to a model for ecology," B. Am. Meteorol. Soc., vol. 73, pp. 360-363, 1967.
    • (1967) B. Am. Meteorol. Soc , vol.73 , pp. 360-363
    • Baum, L.1    Egon, J.2
  • 11
    • 0242540409 scopus 로고    scopus 로고
    • A unifying framework for detecting outliers and change points from non-stationary time series data
    • Edmonton, Alberta, Canada
    • K. Yamanishi and J. ichi Takeuchi, "A unifying framework for detecting outliers and change points from non-stationary time series data," in SIGKDD 2002, Edmonton, Alberta, Canada, 2002, pp. 676-681.
    • (2002) SIGKDD 2002 , pp. 676-681
    • Yamanishi, K.1    ichi Takeuchi, J.2
  • 15
    • 25144482321 scopus 로고    scopus 로고
    • Comparative assessment of the robustness of missing data imputation through Generative Topographic Mapping
    • I. Olier and A. Vellido, "Comparative assessment of the robustness of missing data imputation through Generative Topographic Mapping," in LNCS, vol. 3512, 2005, pp. 787-794.
    • (2005) LNCS , vol.3512 , pp. 787-794
    • Olier, I.1    Vellido, A.2
  • 16
    • 0242577959 scopus 로고    scopus 로고
    • Learning and inference in the brain
    • K. Friston, "Learning and inference in the brain," Neural Networks, vol. 16, pp. 1325-1352, 2003.
    • (2003) Neural Networks , vol.16 , pp. 1325-1352
    • Friston, K.1
  • 17
    • 0036498243 scopus 로고    scopus 로고
    • A dynamic probabilistic model to visualise topic evolution in text streams
    • A. Kabán and M. Girolami, "A dynamic probabilistic model to visualise topic evolution in text streams," J. Intell. Inf. Syst., vol. 18, no. 2-3, pp. 107-125, 2002.
    • (2002) J. Intell. Inf. Syst , vol.18 , Issue.2-3 , pp. 107-125
    • Kabán, A.1    Girolami, M.2
  • 18
    • 0024610919 scopus 로고
    • A tutorial on Hidden Markov Models and selected applications in speech recognition
    • L. Rabiner, "A tutorial on Hidden Markov Models and selected applications in speech recognition," in Proc. of the IEEE, vol. 77, no. 2, 1989, pp. 257-285.
    • (1989) Proc. of the IEEE , vol.77 , Issue.2 , pp. 257-285
    • Rabiner, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.