-
2
-
-
3542993324
-
Noncommutative unification of general relativity and quantum mechanics
-
M. Heller, L. Pysiak and W. Sasin, Noncommutative Unification of General Relativity and Quantum Mechanics, Gen. Rel. Grav. 36 (2004), 111-126
-
(2004)
Gen. Rel. Grav.
, vol.36
, pp. 111-126
-
-
Heller, M.1
Pysiak, L.2
Sasin, W.3
-
3
-
-
33750947757
-
The quantum structure of spacetime at the Planck scale and quantum fields
-
S. Doplicher, K. Fredenhagen and J. Roberts, The quantum structure of spacetime at the Planck scale and quantum fields Comm. Math. Phys. 172 (1995), 187-220
-
(1995)
Comm. Math. Phys.
, vol.172
, pp. 187-220
-
-
Doplicher, S.1
Fredenhagen, K.2
Roberts, J.3
-
4
-
-
0035981886
-
A spectral quadruple for de Sitter space
-
T. Kopf, M. Paschke, A spectral quadruple for de Sitter space, J. Math. Phys. 43 (2002), 818-846
-
(2002)
J. Math. Phys.
, vol.43
, pp. 818-846
-
-
Kopf, T.1
Paschke, M.2
-
5
-
-
0007117991
-
Von nichtkommutativen geometrien, ihren symmetrien und etwas hochenergiephysik
-
Mainz
-
M. Paschke, Von Nichtkommutativen Geometrien, ihren Symmetrien und etwas Hochenergiephysik, Ph. D. thesis (2001), Mainz
-
(2001)
Ph. D. Thesis
-
-
Paschke, M.1
-
6
-
-
0039657309
-
Discrete spectral triples and their symmetries
-
M. Paschke, A. Sitarz, Discrete spectral triples and their symmetries J. Math. Phys. 39 (1998), 6191
-
(1998)
J. Math. Phys.
, vol.39
, pp. 6191
-
-
Paschke, M.1
Sitarz, A.2
-
7
-
-
17044407450
-
Sitarz Can noncommutative geometry accommodate leptoquarks
-
M. Paschke, F. Scheck, A. Sitarz Can noncommutative geometry accommodate leptoquarks? Phys. Rev. D 59 (1999) 035003
-
(1999)
Phys. Rev.
, vol.D59
, pp. 035003
-
-
Paschke, M.1
Scheck A, F.2
-
8
-
-
1542798257
-
Differential calculus on compact matrix pseudogroups
-
S. L. Woronowicz, Differential calculus on compact matrix pseudogroups Comm. Math. Phys. 122 (1989) 125
-
(1989)
Comm. Math. Phys.
, vol.122
, pp. 125
-
-
Woronowicz, S.L.1
-
11
-
-
0032209694
-
Classification of finite spectral triples
-
T. Krajewski, Classification of finite spectral triples J. Geom. Phys. 28 (1998) 1
-
(1998)
J. Geom. Phys.
, vol.28
, Issue.1
-
-
Krajewski, T.1
-
15
-
-
0000151581
-
The local index formula in noncommutative geometry
-
A. Connes, H. Moscovici The local index formula in noncommutative geometry Geom. Func. Anal. 5 (1995) 174-243
-
(1995)
Geom. Func. Anal.
, vol.5
, pp. 174-243
-
-
Connes, A.1
Moscovici, H.2
-
16
-
-
44949280789
-
Particle models and noncommutative geometry
-
B, Proc.
-
A. Connes, J. Lott, Particle models and noncommutative geometry Nucl. Phys. B (Proc. Suppl. ) 18 (1990) 29-47
-
(1990)
Nucl. Phys.
, vol.18
, Issue.SUPPL.
, pp. 29-47
-
-
Connes, A.1
Lott, J.2
-
18
-
-
0031185123
-
A. Connes the spectral action principle
-
A. Chamseddine, A. Connes The spectral action principle Comm. Math. Phys. 186 (1997) 731-750
-
(1997)
Comm. Math. Phys.
, vol.186
, pp. 731-750
-
-
Chamseddine, A.1
-
19
-
-
0000380835
-
Noncommutative geometry and graded algebras in electroweak interactions
-
R. Coquereaux, G. Esposito-Farèse, F. Scheck, Noncommutative Geometry and graded algebras in electroweak interactions J. Mod. Phys. A 7 (1992) 6555
-
(1992)
J. Mod. Phys.
, vol.A 7
, pp. 6555
-
-
Coquereaux, R.1
Esposito-Farèse, G.2
Scheck, F.3
-
21
-
-
10844224609
-
Local covariant quantum field theory over spectral geometries
-
M. Paschke, R. Verch, Local covariant quantum field theory over spectral geometries, Class. Quantum Grav. 21 (2004), 5299-5316
-
(2004)
Class. Quantum Grav.
, vol.21
, pp. 5299-5316
-
-
Paschke, M.1
Verch, R.2
-
22
-
-
84890205781
-
Globally hyperbolic noncommutative geometries
-
M. Paschke, R. Verch, Globally hyperbolic noncommutative geometries, in preparation
-
Preparation
-
-
Paschke, M.1
Verch, R.2
-
23
-
-
0037402478
-
Quantum field theory on noncommutative spaces
-
R. Szabo Quantum Field Theory on Noncommutative Spaces, Phys. Rept. 378 (2003) 207-299
-
(2003)
Phys. Rept.
, vol.378
, pp. 207-299
-
-
Szabo, R.1
-
24
-
-
0032354454
-
Quantum mechanics of a point particle in 2+1 dimensional gravity
-
H.-J. Matschull and M. Welling Quantum Mechanics of a Point Particle in 2+1 Dimensional Gravity, Class. Quant. Grav. 15 (1998) 2981-3030
-
(1998)
Class. Quant. Grav.
, vol.15
, pp. 2981-3030
-
-
Matschull, H.-J.1
Welling, M.2
-
26
-
-
13244268779
-
Emergence of a 4D world from causal quantum gravity
-
J. Ambjorn, J. Jurkewicz, R. Loll, Emergence of a 4D World from Causal Quantum Gravity, Phys. Rev. Lett. 93 (2004) 131301
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 131301
-
-
Ambjorn, J.1
Jurkewicz, J.2
Loll, R.3
-
27
-
-
27544508835
-
Fractal spacetime structure in asymptotically safe gravity
-
O. Lauscher, M. Reuter, Fractal Spacetime Structure in Asymptotically Safe Gravity, JHEP 0510 (2005) 050
-
(2005)
JHEP 0510
, pp. 050
-
-
Lauscher, O.1
Reuter, M.2
-
29
-
-
84890230416
-
Representations of the weyl algebra in quantum geometry
-
C. Fleischhack, Representations of the Weyl Algebra in Quantum Geometry, mathph/ 0407006
-
Mathph/ 0407006
-
-
Fleischhack, C.1
-
31
-
-
17444400843
-
On a classification of irreducible almost commutative geometries III
-
J.-H. Jureit, T. Schücker, C. Stephan, On a Classification of Irreducible Almost Commutative Geometries III, J. Math. Phys. 46 (2005), 072303
-
(2005)
J. Math. Phys.
, vol.46
, pp. 072303
-
-
Jureit, J.-H.1
Schücker, T.2
Stephan, C.3
-
32
-
-
84890150775
-
Almost-commutative geometries beyond the standard model
-
C. Stephan, Almost-Commutative Geometries Beyond the Standard Model, hepth/ 0509213
-
Hepth/ 0509213
-
-
Stephan, C.1
-
33
-
-
0035927482
-
A farewell to unimodularity
-
S. Lazzarini, T. Schücker, A Farewell To Unimodularity, Phys. Lett. B 510 (2001) 277-284
-
(2001)
Phys. Lett.
, vol.B 510
, pp. 277-284
-
-
Lazzarini, S.1
Schücker, T.2
-
35
-
-
0000595944
-
Noncommutative manifolds, the instanton algebra and isospectral deformations
-
G. Landi, A. Connes, Noncommutative Manifolds, The Instanton Algebra and Isospectral Deformations, Comm. Math. Phys 221 (2001), 141-159
-
(2001)
Comm. Math. Phys
, vol.221
, pp. 141-159
-
-
Landi, G.1
Connes, A.2
-
37
-
-
0037972693
-
The generally covariant locality principle-A new paradigm for local quantum physics
-
R. Brunetti, K. Fredenhagen, R. Verch The generally covariant locality principle-A new paradigm for local quantum physics, Comm. Math. Phys. 237 (2003) 31-68
-
(2003)
Comm. Math. Phys.
, vol.237
, pp. 31-68
-
-
Brunetti, R.1
Fredenhagen, K.2
Verch, R.3
|