메뉴 건너뛰기




Volumn 24, Issue 2, 2008, Pages 670-686

A numerical study of the accuracy and stability of symmetric and asymmetric RBF collocation methods for hyperbolic PDEs

Author keywords

Collocation methods; Eigenvalue stability; Hyperbolic partial differential equations; Numerical partial differential equations; Radial basis functions

Indexed keywords


EID: 40749138583     PISSN: 0749159X     EISSN: 10982426     Source Type: Journal    
DOI: 10.1002/num.20290     Document Type: Article
Times cited : (32)

References (14)
  • 1
    • 0025210711 scopus 로고
    • Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics (II): Solutions to parabolic, hyperbolic, and elliptic partial differential equations
    • 1 E. Kansa, Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics (II): Solutions to parabolic, hyperbolic, and elliptic partial differential equations, Computers Math Applic 19 ( 1990), 147–161.
    • (1990) Computers Math Applic , vol.19 , pp. 147-161
    • Kansa, E.1
  • 2
    • 0002434097 scopus 로고    scopus 로고
    • Solving partial differential equations by collocation with radial basis functions
    • 2 G. E. Fasshauer, Solving partial differential equations by collocation with radial basis functions, Proceedings of Chamonix, 1996.
    • (1996)
    • Fasshauer, G.E.1
  • 3
    • 33645679664 scopus 로고    scopus 로고
    • RBF collocation methods and pseudospectral methods
    • 3 G. E. Fasshauer, RBF collocation methods and pseudospectral methods, Preprint. Illinois Institute of Technology, 2004.
    • (2004)
    • Fasshauer, G.E.1
  • 4
    • 0036467591 scopus 로고    scopus 로고
    • Observations on the behavior of radial basis function approximations near boundaries
    • 4 B. Fornberg, T. Dirscol, G. Wright, and R. Charles, Observations on the behavior of radial basis function approximations near boundaries, Computers Math Applic 43 ( 2003), 473–490.
    • (2003) Computers Math Applic , vol.43 , pp. 473-490
    • Fornberg, B.1    Dirscol, T.2    Wright, G.3    Charles, R.4
  • 5
    • 33745923525 scopus 로고    scopus 로고
    • Eigenvalue stability of radial basis functions discretizations for time‐dependent problems
    • 5 R. Platte and T. Driscoll, Eigenvalue stability of radial basis functions discretizations for time‐dependent problems, Computers Math Applic 51 ( 2006), 1251–1268.
    • (2006) Computers Math Applic , vol.51 , pp. 1251-1268
    • Platte, R.1    Driscoll, T.2
  • 6
    • 0344006664 scopus 로고    scopus 로고
    • Low‐dissipation and low‐dispersion Runge‐Kutta schemes for computational acoustics
    • 6 F. Q. Hu, M. Y. Hussaini, and J. L. Manthey, Low‐dissipation and low‐dispersion Runge‐Kutta schemes for computational acoustics, J Computat Phys 124 ( 1996), 177–191.
    • (1996) J Computat Phys , vol.124 , pp. 177-191
    • Hu, F.Q.1    Hussaini, M.Y.2    Manthey, J.L.3
  • 7
    • 51249166702 scopus 로고
    • Error estimates and condition numbers for radial basis function interpolation
    • 7 R. Schaback, Error estimates and condition numbers for radial basis function interpolation, Adv Computat Math 3 ( 1995), 251–264.
    • (1995) Adv Computat Math , vol.3 , pp. 251-264
    • Schaback, R.1
  • 8
    • 3042799255 scopus 로고    scopus 로고
    • Radial Basis Functions
    • 8 M. D. Buhmann, Radial Basis Functions, Cambridge University Press, 2003.
    • (2003)
    • Buhmann, M.D.1
  • 9
    • 34250122797 scopus 로고
    • Interpolation of scattered data: distance matrices and conditionally positive definite functions
    • 9 C. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, Construct Approxim 2 ( 1986), 11–22.
    • (1986) Construct Approxim , vol.2 , pp. 11-22
    • Micchelli, C.1
  • 10
    • 0035311996 scopus 로고    scopus 로고
    • On unsymmetric collocation by radial basis function
    • 10 Y. Hon and R. Schaback, On unsymmetric collocation by radial basis function, Appl Math Computations 119 ( 2001), 177–186.
    • (2001) Appl Math Computations , vol.119 , pp. 177-186
    • Hon, Y.1    Schaback, R.2
  • 11
    • 85120593939 scopus 로고    scopus 로고
    • Transport schemes on a sphere using radial basis functions
    • 11 N. Flyer and G. Wright, Transport schemes on a sphere using radial basis functions, J Computat Phys, submitted for publication.
    • Flyer, N.1    Wright, G.2
  • 12
    • 33646717933 scopus 로고    scopus 로고
    • Near‐optimal data‐independent point locations for radial basis function interpolation
    • 12 S. De Marchi, R. Schaback, and H. Wendland, Near‐optimal data‐independent point locations for radial basis function interpolation, Adv Computat Math 23 ( 2005), 317–330.
    • (2005) Adv Computat Math , vol.23 , pp. 317-330
    • De Marchi, S.1    Schaback, R.2    Wendland, H.3
  • 13
    • 0003502626 scopus 로고    scopus 로고
    • Computational electrodynamics: The finite‐difference time‐domain method
    • 13 A. Taflove and S. Hagness, Computational electrodynamics: The finite‐difference time‐domain method, 2nd Ed., Artech House Publishers, 2000.
    • (2000)
    • Taflove, A.1    Hagness, S.2
  • 14
    • 85120595516 scopus 로고    scopus 로고
    • Computational mode control, expanded stability, and second order accuracy with leap‐frog time differencing via symmetric filtering
    • 14 S. A. Sarra and A. Aluthge, Computational mode control, expanded stability, and second order accuracy with leap‐frog time differencing via symmetric filtering, J Computat Appl Math, under review.
    • J Computat Appl Math
    • Sarra, S.A.1    Aluthge, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.