-
1
-
-
40749113866
-
Extremes of diffusions over fixed intervals
-
Albin J.M.P. Extremes of diffusions over fixed intervals. Stochast. Proc. Appl. 48 (1993) 211-235
-
(1993)
Stochast. Proc. Appl.
, vol.48
, pp. 211-235
-
-
Albin, J.M.P.1
-
2
-
-
22244488845
-
Diffusion-type models with given marginal distribution and autocorrelation function
-
Bibby B.M., Skovgaard I.M., and Sørensen M. Diffusion-type models with given marginal distribution and autocorrelation function. Bernoulli 11 (2005) 191-220
-
(2005)
Bernoulli
, vol.11
, pp. 191-220
-
-
Bibby, B.M.1
Skovgaard, I.M.2
Sørensen, M.3
-
3
-
-
40749159485
-
Factorization theory for probability distributions
-
Bondesson L. Factorization theory for probability distributions. Scand. Actuar. J. 1 (1995) 44-53
-
(1995)
Scand. Actuar. J.
, vol.1
, pp. 44-53
-
-
Bondesson, L.1
-
4
-
-
40749112605
-
Arbitrage and completeness in financial markets with given N-dimensional distributions
-
Campi L. Arbitrage and completeness in financial markets with given N-dimensional distributions. Decis. Econ. Finance 27 (2004) 57-80
-
(2004)
Decis. Econ. Finance
, vol.27
, pp. 57-80
-
-
Campi, L.1
-
5
-
-
23844547906
-
A note on sufficient conditions for no arbitrage
-
Carr P., and Madan D.B. A note on sufficient conditions for no arbitrage. Finance Res. Lett. 2 (2005) 125-130
-
(2005)
Finance Res. Lett.
, vol.2
, pp. 125-130
-
-
Carr, P.1
Madan, D.B.2
-
6
-
-
0001205798
-
A theory of the term structure of interest rates
-
Cox J.C., Ingersoll Jr. J.E., and Ross S.A. A theory of the term structure of interest rates. Econometrica 53 (1985) 385-406
-
(1985)
Econometrica
, vol.53
, pp. 385-406
-
-
Cox, J.C.1
Ingersoll Jr., J.E.2
Ross, S.A.3
-
7
-
-
0003864328
-
-
McGraw-Hill, New York
-
Erdélyi A., Magnus W., Oberhettinger F., and Tricomi F.G. Higher Transcendental Functions, vol. I (1953), McGraw-Hill, New York
-
(1953)
Higher Transcendental Functions, vol. I
-
-
Erdélyi, A.1
Magnus, W.2
Oberhettinger, F.3
Tricomi, F.G.4
-
8
-
-
0003864328
-
-
McGraw-Hill, New York
-
Erdélyi A., Magnus W., Oberhettinger F., and Tricomi F.G. Higher Transcendental Functions, vol. II (1953), McGraw-Hill, New York
-
(1953)
Higher Transcendental Functions, vol. II
-
-
Erdélyi, A.1
Magnus, W.2
Oberhettinger, F.3
Tricomi, F.G.4
-
9
-
-
0003438193
-
-
McGraw-Hill, New York
-
Erdélyi A., Magnus W., Oberhettinger F., and Tricomi F.G. Tables of Integral Transforms, vol. I (1954), McGraw-Hill, New York
-
(1954)
Tables of Integral Transforms, vol. I
-
-
Erdélyi, A.1
Magnus, W.2
Oberhettinger, F.3
Tricomi, F.G.4
-
10
-
-
0001277826
-
Two singular diffusion problems
-
Feller W. Two singular diffusion problems. Ann. Math. 54 (1951) 173-182
-
(1951)
Ann. Math.
, vol.54
, pp. 173-182
-
-
Feller, W.1
-
11
-
-
33745308276
-
On nonexistence of non-constant volatility in the Black-Scholes formula
-
Hamza K., and Klebaner F.C. On nonexistence of non-constant volatility in the Black-Scholes formula. Discrete Contin. Dyn. Syst. Ser. B 6 (2006) 829-834
-
(2006)
Discrete Contin. Dyn. Syst. Ser. B
, vol.6
, pp. 829-834
-
-
Hamza, K.1
Klebaner, F.C.2
-
12
-
-
40749127454
-
-
Hamza, K., Klebaner, F.C., 2006b. A family of non-Gaussian martingales with Gaussian marginals. arXiv:math.PR 0604127.
-
Hamza, K., Klebaner, F.C., 2006b. A family of non-Gaussian martingales with Gaussian marginals. arXiv:math.PR 0604127.
-
-
-
-
14
-
-
0007171745
-
Markov-Komposition und eine Anwendung auf Martingale
-
Kellerer H.G. Markov-Komposition und eine Anwendung auf Martingale. Math. Ann. 198 (1972) 99-122
-
(1972)
Math. Ann.
, vol.198
, pp. 99-122
-
-
Kellerer, H.G.1
-
15
-
-
12144274928
-
Making Markov martingales meet marginals: with explicit constructions
-
Madan D.B., and Yor M. Making Markov martingales meet marginals: with explicit constructions. Bernoulli 8 (2002) 509-536
-
(2002)
Bernoulli
, vol.8
, pp. 509-536
-
-
Madan, D.B.1
Yor, M.2
-
16
-
-
40749085921
-
-
Schachermayer, W., Teichmann, J., 2006. How close are the option pricing formulas of Bachelier and Black-Merton-Scholes?. Math. Finance, to appear.
-
Schachermayer, W., Teichmann, J., 2006. How close are the option pricing formulas of Bachelier and Black-Merton-Scholes?. Math. Finance, to appear.
-
-
-
|