메뉴 건너뛰기




Volumn 15, Issue 2, 2008, Pages 415-423

Limitations of claims and registry data in surgical oncology research

Author keywords

Administrative; Claims; Data; Outcomes; Registry; Surgery

Indexed keywords

BILLING AND CLAIMS; CANCER REGISTRY; CANCER RESEARCH; CANCER SURGERY; COMORBIDITY; CONFOUNDING VARIABLE; DATA ANALYSIS; INTERNAL VALIDITY; MEDICAL LITERATURE; MEDICAL RESEARCH; METHODOLOGY; OUTCOME ASSESSMENT; REVIEW; SAMPLE SIZE; STATISTICAL SIGNIFICANCE; ARTICLE; EPIDEMIOLOGY; HUMAN; INSURANCE; MEDICARE; MULTIVARIATE ANALYSIS; ONCOLOGY; REGISTER; RISK ASSESSMENT; STANDARD; STATISTICAL MODEL; SURGERY; UNITED STATES;

EID: 40649128580     PISSN: 10689265     EISSN: 15344681     Source Type: Journal    
DOI: 10.1245/s10434-007-9658-3     Document Type: Review
Times cited : (218)

References (39)
  • 1
    • 0034996996 scopus 로고    scopus 로고
    • Administrative data for public health surveillance and planning
    • Virnig BA, McBean M. Administrative data for public health surveillance and planning. Ann Rev Public Health 2001; 22:213-30
    • (2001) Ann Rev Public Health , vol.22 , pp. 213-30
    • Virnig, B.A.1    McBean, M.2
  • 3
    • 0036780449 scopus 로고    scopus 로고
    • Can administrative data be used to compare postoperative complication rates across hospitals?
    • 10
    • Romano PS, Chan BK, Schembri ME, Rainwater JA. Can administrative data be used to compare postoperative complication rates across hospitals? Med Care 2002; 40(10):856-67
    • (2002) Med Care , vol.40 , pp. 856-67
    • Romano, P.S.1    Chan, B.K.2    Schembri, M.E.3    Rainwater, J.A.4
  • 4
    • 0030902266 scopus 로고    scopus 로고
    • Accuracy of administrative data for assessing outcomes after knee replacement surgery
    • 3
    • Hawker GA, Coyte PC, Wright JG, Paul JE, Bombardier C. Accuracy of administrative data for assessing outcomes after knee replacement surgery. J Clin Epidemiol 1997; 50(3):265-73
    • (1997) J Clin Epidemiol , vol.50 , pp. 265-73
    • Hawker, G.A.1    Coyte, P.C.2    Wright, J.G.3    Paul, J.E.4    Bombardier, C.5
  • 6
    • 0038478965 scopus 로고    scopus 로고
    • Overview of the SEER-Medicare data: Content, research applications, and generalizability to the United States elderly population
    • 8 Suppl IV-
    • Warren JL, Klabunde CN, Schrag D, Bach PB, Riley GF. Overview of the SEER-Medicare data: content, research applications, and generalizability to the United States elderly population. Med Care 2002; 40(8 Suppl IV-):3-18
    • (2002) Med Care , vol.40 , pp. 3-18
    • Warren, J.L.1    Klabunde, C.N.2    Schrag, D.3    Bach, P.B.4    Riley, G.F.5
  • 7
    • 84856289934 scopus 로고    scopus 로고
    • [accessed July 15, 2007, at]
    • SEER-Medicare: About the Data Files [accessed July 15, 2007, at http://www.healthservices.cancer.gov/seermedicare/aboutdata/ index.html]
    • SEER-Medicare: About the Data Files
  • 9
    • 0030862072 scopus 로고    scopus 로고
    • Estimating causal effects from large data sets using propensity scores
    • 8 Pt 2
    • Rubin DB. Estimating causal effects from large data sets using propensity scores. Ann Intern Med 1997; 127(8 Pt 2):757-63
    • (1997) Ann Intern Med , vol.127 , pp. 757-63
    • Rubin, D.B.1
  • 10
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • 1
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70(1):41-55
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 11
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • 387
    • Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. J Am Stat Assoc 1984; 79(387):516-24
    • (1984) J Am Stat Assoc , vol.79 , pp. 516-24
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 12
    • 84945581878 scopus 로고
    • Constructing a control-group using multivariate matched sampling methods that incorporate the propensity score
    • 1
    • Rosenbaum PR, Rubin DB. Constructing a control-group using multivariate matched sampling methods that incorporate the propensity score. Am Stat 1985; 39(1):33-8
    • (1985) Am Stat , vol.39 , pp. 33-8
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 13
    • 0037108832 scopus 로고    scopus 로고
    • Rare outcomes, common treatments: Analytic strategies using propensity scores
    • 8
    • Braitman LE, Rosenbaum PR. Rare outcomes, common treatments: analytic strategies using propensity scores. Ann Intern Med 2002; 137(8):693-5
    • (2002) Ann Intern Med , vol.137 , pp. 693-5
    • Braitman, L.E.1    Rosenbaum, P.R.2
  • 14
    • 33846436128 scopus 로고    scopus 로고
    • Analysis of observational studies in the presence of treatment selection bias: Effects of invasive cardiac management on AMI survival using propensity score and instrumental variable methods
    • 3
    • Stukel TA, Fisher ES, Wennberg DE, Alter DA, Gottlieb DJ, Vermeulen MJ. Analysis of observational studies in the presence of treatment selection bias: effects of invasive cardiac management on AMI survival using propensity score and instrumental variable methods. JAMA 2007; 297(3):278-85
    • (2007) JAMA , vol.297 , pp. 278-85
    • Stukel, T.A.1    Fisher, E.S.2    Wennberg, D.E.3    Alter, D.A.4    Gottlieb, D.J.5    Vermeulen, M.J.6
  • 15
    • 19144368778 scopus 로고    scopus 로고
    • The use of the propensity score for estimating treatment effects: Administrative versus clinical data
    • 10
    • Austin PC, Mamdani MM, Stukel TA, Anderson GM, Tu JV. The use of the propensity score for estimating treatment effects: administrative versus clinical data. Stat Med 2005; 24(10):1563-78
    • (2005) Stat Med , vol.24 , pp. 1563-78
    • Austin, P.C.1    Mamdani, M.M.2    Stukel, T.A.3    Anderson, G.M.4    Tu, J.V.5
  • 16
    • 0032436644 scopus 로고    scopus 로고
    • Who is the marginal patient? Understanding instrumental variables estimates of treatment effects
    • 5 Pt 1
    • Harris KM, Remler DK. Who is the marginal patient? Understanding instrumental variables estimates of treatment effects. Health Serv Res 1998; 33(5 Pt 1):1337-60
    • (1998) Health Serv Res , vol.33 , pp. 1337-60
    • Harris, K.M.1    Remler, D.K.2
  • 17
    • 0019023746 scopus 로고
    • Why data bases should not replace randomized clinical trials
    • 2
    • Byar DP. Why data bases should not replace randomized clinical trials. Biometrics 1980; 36(2):337-42
    • (1980) Biometrics , vol.36 , pp. 337-42
    • Byar, D.P.1
  • 18
    • 0021741474 scopus 로고
    • Using observational data from registries to compare treatments: The fallacy of omnimetrics
    • 4
    • Green SB, Byar DP. Using observational data from registries to compare treatments: the fallacy of omnimetrics. Stat Med 1984; 3(4):361-73
    • (1984) Stat Med , vol.3 , pp. 361-73
    • Green, S.B.1    Byar, D.P.2
  • 19
    • 0023092594 scopus 로고
    • A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation
    • 5
    • Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987; 40(5):373-83
    • (1987) J Chronic Dis , vol.40 , pp. 373-83
    • Charlson, M.E.1    Pompei, P.2    Ales, K.L.3    MacKenzie, C.R.4
  • 20
    • 0026639706 scopus 로고
    • Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases
    • 6
    • Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol 1992; 45(6):613-9
    • (1992) J Clin Epidemiol , vol.45 , pp. 613-9
    • Deyo, R.A.1    Cherkin, D.C.2    Ciol, M.A.3
  • 21
    • 0027445675 scopus 로고
    • Adapting a clinical comorbidity index for use with ICD-9-CM administrative data: Differing perspectives
    • 10. discussion 81-90
    • Romano PS, Roos LL, Jollis JG. Adapting a clinical comorbidity index for use with ICD-9-CM administrative data: differing perspectives. J Clin Epidemiol 1993; 46(10):1075-9; discussion 81-90
    • (1993) J Clin Epidemiol , vol.46 , pp. 1075-9
    • Romano, P.S.1    Roos, L.L.2    Jollis, J.G.3
  • 22
    • 0030750913 scopus 로고    scopus 로고
    • Evaluation of two competing methods for calculating Charlson's comorbidity index when analyzing short-term mortality using administrative data
    • 8
    • Cleves MA, Sanchez N, Draheim M. Evaluation of two competing methods for calculating Charlson's comorbidity index when analyzing short-term mortality using administrative data. J Clin Epidemiol 1997; 50(8):903-8
    • (1997) J Clin Epidemiol , vol.50 , pp. 903-8
    • Cleves, M.A.1    Sanchez, N.2    Draheim, M.3
  • 23
    • 0036675916 scopus 로고    scopus 로고
    • Validity of information on comorbidity derived from ICD-9-CCM administrative data
    • 8
    • Quan H, Parsons GA, Ghali WA. Validity of information on comorbidity derived from ICD-9-CCM administrative data. Med Care 2002; 40(8):675-85
    • (2002) Med Care , vol.40 , pp. 675-85
    • Quan, H.1    Parsons, G.A.2    Ghali, W.A.3
  • 24
    • 0027941338 scopus 로고
    • Using administrative data to describe casemix: A comparison with the medical record
    • 9
    • Malenka DJ, McLerran D, Roos N, Fisher ES, Wennberg JE. Using administrative data to describe casemix: a comparison with the medical record. J Clin Epidemiol 1994; 47(9):1027-32
    • (1994) J Clin Epidemiol , vol.47 , pp. 1027-32
    • Malenka, D.J.1    McLerran, D.2    Roos, N.3    Fisher, E.S.4    Wennberg, J.E.5
  • 26
    • 0035403769 scopus 로고    scopus 로고
    • Comparison of the performance of two comorbidity measures, with and without information from prior hospitalizations
    • 7
    • Stukenborg GJ, Wagner DP, Connors AF Jr. Comparison of the performance of two comorbidity measures, with and without information from prior hospitalizations. Med Care 2001; 39(7):727-39
    • (2001) Med Care , vol.39 , pp. 727-39
    • Stukenborg, G.J.1    Wagner, D.P.2    Connors Jr., A.F.3
  • 27
    • 2142695867 scopus 로고    scopus 로고
    • Comparison of the Elixhauser and Charlson/Deyo methods of comorbidity measurement in administrative data
    • 4
    • Southern DA, Quan H, Ghali WA. Comparison of the Elixhauser and Charlson/Deyo methods of comorbidity measurement in administrative data. Med Care 2004; 42(4):355-60
    • (2004) Med Care , vol.42 , pp. 355-60
    • Southern, D.A.1    Quan, H.2    Ghali, W.A.3
  • 28
    • 33747822933 scopus 로고    scopus 로고
    • In search of the perfect comorbidity measure for use with administrative claims data: Does it exist?
    • 8
    • Baldwin LM, Klabunde CN, Green P, Barlow W, Wright G. In search of the perfect comorbidity measure for use with administrative claims data: does it exist? Med Care 2006; 44(8):745-53
    • (2006) Med Care , vol.44 , pp. 745-53
    • Baldwin, L.M.1    Klabunde, C.N.2    Green, P.3    Barlow, W.4    Wright, G.5
  • 29
    • 33846296650 scopus 로고    scopus 로고
    • Development of bariatric surgery-specific risk assessment tool
    • 1. discussion
    • Livingston EH. Development of bariatric surgery-specific risk assessment tool. Surg Obes Relat Dis 2007; 3(1):14-20; discussion
    • (2007) Surg Obes Relat Dis , vol.3 , pp. 14-20
    • Livingston, E.H.1
  • 31
    • 34547096275 scopus 로고    scopus 로고
    • A Refined comorbidity measurement algorithm for claims-based studies of breast, prostate, colorectal, and lung cancer patients
    • 8
    • Klabunde CN, Legler JM, Warren JL, Baldwin LM, Schrag D. A Refined comorbidity measurement algorithm for claims-based studies of breast, prostate, colorectal, and lung cancer patients. Ann Epidemiol 2007; 17(8):584-90
    • (2007) Ann Epidemiol , vol.17 , pp. 584-90
    • Klabunde, C.N.1    Legler, J.M.2    Warren, J.L.3    Baldwin, L.M.4    Schrag, D.5
  • 32
    • 0029944493 scopus 로고    scopus 로고
    • Searching for an improved clinical comorbidity index for use with ICD-9-CM administrative data
    • 3
    • Ghali WA, Hall RE, Rosen AK, Ash AS, Moskowitz MA. Searching for an improved clinical comorbidity index for use with ICD-9-CM administrative data. J Clin Epidemiol 1996; 49(3):273-8
    • (1996) J Clin Epidemiol , vol.49 , pp. 273-8
    • Ghali, W.A.1    Hall, R.E.2    Rosen, A.K.3    Ash, A.S.4    Moskowitz, M.A.5
  • 33
    • 33744925905 scopus 로고    scopus 로고
    • Evaluation of comorbidity indices for inpatient mortality prediction models
    • 7
    • Martins M, Blais R. Evaluation of comorbidity indices for inpatient mortality prediction models. J Clin Epidemiol 2006; 59(7):665-9
    • (2006) J Clin Epidemiol , vol.59 , pp. 665-9
    • Martins, M.1    Blais, R.2
  • 34
    • 33846021262 scopus 로고    scopus 로고
    • Enhancement of claims data to improve risk adjustment of hospital mortality
    • 1
    • Pine M, Jordan HS, Elixhauser A, et al. Enhancement of claims data to improve risk adjustment of hospital mortality. JAMA 2007; 297(1):71-6
    • (2007) JAMA , vol.297 , pp. 71-6
    • Pine, M.1    Jordan, H.S.2    Elixhauser, A.3
  • 35
    • 0036677013 scopus 로고    scopus 로고
    • Assessing comorbidity using claims data: An overview
    • 8 Suppl IV
    • Klabunde CN, Warren JL, Legler JM. Assessing comorbidity using claims data: an overview. Med Care 2002; 40(8 Suppl IV):26-35
    • (2002) Med Care , vol.40 , pp. 26-35
    • Klabunde, C.N.1    Warren, J.L.2    Legler, J.M.3
  • 38
    • 0032960273 scopus 로고    scopus 로고
    • Multiple imputation: A primer
    • 1
    • Schafer JL. Multiple imputation: a primer. Stat Methods Med Res 1999; 8(1):3-15
    • (1999) Stat Methods Med Res , vol.8 , pp. 3-15
    • Schafer, J.L.1
  • 39
    • 31844443695 scopus 로고
    • The Environment and Disease: Association or Causation?
    • Hill AB. The environment and disease: association or causation? Proc R Soc Med 1965; 58:295-300
    • (1965) Proc R Soc Med , vol.58 , pp. 295-300
    • Hill, A.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.