메뉴 건너뛰기




Volumn 21, Issue 2-3, 2008, Pages 398-405

An adaptive method for industrial hydrocarbon flame detection

Author keywords

Artificial neural networks; Flame detection; Signal processing

Indexed keywords

DATA ACQUISITION; FEATURE EXTRACTION; GAIN CONTROL; HYDROCARBON REFINING; NEURAL NETWORKS;

EID: 40649126542     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2007.12.018     Document Type: Article
Times cited : (9)

References (30)
  • 2
    • 0025551375 scopus 로고    scopus 로고
    • Baba, K., Enbutu, I., & Yoda, M. (1990). Explicit representation of knowledge acquired from plant historical data using neural network. In Proceedings of the international joint conference on neural networks, 3 (pp. 155-160)
    • Baba, K., Enbutu, I., & Yoda, M. (1990). Explicit representation of knowledge acquired from plant historical data using neural network. In Proceedings of the international joint conference on neural networks, 3 (pp. 155-160)
  • 3
    • 40649094630 scopus 로고    scopus 로고
    • Baliga, S. B., Rabe, H., & Bleacher, B. (2000). Digital multi-frequency flame detector, U.S. patent no. 6, 150, 659
    • Baliga, S. B., Rabe, H., & Bleacher, B. (2000). Digital multi-frequency flame detector, U.S. patent no. 6, 150, 659
  • 4
    • 40649108436 scopus 로고    scopus 로고
    • Boger, Z., Ratton, L., Kunt, T. A., McAvoy, T. J., Cavicchi, R. E., & Semancik, S. (1997). Robust classification of 'Artificial Noise' sensor data by artificial neural networks. In Proceedings of the IFAC ADCHEM'97 conference (pp. 334-338)
    • Boger, Z., Ratton, L., Kunt, T. A., McAvoy, T. J., Cavicchi, R. E., & Semancik, S. (1997). Robust classification of 'Artificial Noise' sensor data by artificial neural networks. In Proceedings of the IFAC ADCHEM'97 conference (pp. 334-338)
  • 5
    • 0035281460 scopus 로고    scopus 로고
    • Automatic keyword identification by artificial neural networks compared to manual identification by users of filtering systems
    • Boger Z., Kuflik T., Peretz S., and Shapira B. Automatic keyword identification by artificial neural networks compared to manual identification by users of filtering systems. Information Processing and Management 37 2 (2001) 187-198
    • (2001) Information Processing and Management , vol.37 , Issue.2 , pp. 187-198
    • Boger, Z.1    Kuflik, T.2    Peretz, S.3    Shapira, B.4
  • 6
    • 40649122394 scopus 로고    scopus 로고
    • Boger, Z. (2000-2005). Who is afraid of the BIG bad ANN? In Proceedings of the IEEE international joint conference on neural networks, 3
    • Boger, Z. (2000-2005). Who is afraid of the BIG bad ANN? In Proceedings of the IEEE international joint conference on neural networks, 3
  • 7
    • 84555179004 scopus 로고    scopus 로고
    • Chen, Y., Serio, M. A., & Sathyamoorthy, S. (1999). Development of a fire detection system using FT-IR spectroscopy and artificial neural networks. In Proceedings of the sixth international symposium of the international association for fire safety science (pp. 791-802)
    • Chen, Y., Serio, M. A., & Sathyamoorthy, S. (1999). Development of a fire detection system using FT-IR spectroscopy and artificial neural networks. In Proceedings of the sixth international symposium of the international association for fire safety science (pp. 791-802)
  • 8
    • 84968470212 scopus 로고
    • An algorithm for the machine calculation of complex fourier series
    • Cooley J.W., and Tukey J.W. An algorithm for the machine calculation of complex fourier series. Mathematics of Computation 19 (1965) 297-301
    • (1965) Mathematics of Computation , vol.19 , pp. 297-301
    • Cooley, J.W.1    Tukey, J.W.2
  • 9
    • 40649090023 scopus 로고    scopus 로고
    • Det-tronics, Inc. (2000). X3301 Multi-spectrum infrared flame detector. http://www.detronics.com
    • Det-tronics, Inc. (2000). X3301 Multi-spectrum infrared flame detector. http://www.detronics.com
  • 10
    • 40649119110 scopus 로고    scopus 로고
    • European Standard EN 54-10. (2002). Fire detection and fire alarm systems, Part 10, European Committee for Standardization. http://www.cenorm.be
    • European Standard EN 54-10. (2002). Fire detection and fire alarm systems, Part 10, European Committee for Standardization. http://www.cenorm.be
  • 11
    • 40649105638 scopus 로고    scopus 로고
    • Factory Mutual (FM) Global. (2000). Radiant energy-sensing fire detectors for automatic fire alarm signaling. http://www.fmglobal.com
    • Factory Mutual (FM) Global. (2000). Radiant energy-sensing fire detectors for automatic fire alarm signaling. http://www.fmglobal.com
  • 12
    • 40649087951 scopus 로고    scopus 로고
    • Goldenberg, E., Olami, T., & Arian, J. (1994) Method for detecting a fire condition. U.S. patent no. 5, 373, 159
    • Goldenberg, E., Olami, T., & Arian, J. (1994) Method for detecting a fire condition. U.S. patent no. 5, 373, 159
  • 13
    • 0001991491 scopus 로고
    • Application of principal component analysis to the design of neural networks
    • Guterman H. Application of principal component analysis to the design of neural networks. Neural, Parallel and Scientific Computations 2 (1994) 43-54
    • (1994) Neural, Parallel and Scientific Computations , vol.2 , pp. 43-54
    • Guterman, H.1
  • 14
    • 33750121006 scopus 로고    scopus 로고
    • Huseynov, J. J., Boger, Z., Shubinsky, G. D., & Baliga, S. B. (2005) Optical flame detection using large-scale artificial neural networks. In: Proceedings of the IEEE international joint conference on neural networks, 3 (pp. 1959-1964)
    • Huseynov, J. J., Boger, Z., Shubinsky, G. D., & Baliga, S. B. (2005) Optical flame detection using large-scale artificial neural networks. In: Proceedings of the IEEE international joint conference on neural networks, 3 (pp. 1959-1964)
  • 15
    • 40649087500 scopus 로고    scopus 로고
    • Huseynov, J. J., Baliga, S. B., Shubinsky, G. D., & Boger, Z. (2007). Flame Detection System. U.S. patent no. 7, 202, 794
    • Huseynov, J. J., Baliga, S. B., Shubinsky, G. D., & Boger, Z. (2007). Flame Detection System. U.S. patent no. 7, 202, 794
  • 16
    • 40649126247 scopus 로고    scopus 로고
    • Ishii, H., Ono, T., Yamauchi, Y., & Ohtani, S. (1993). Fire detection system by multi-layered neural network with delay circuit. In Proceedings of the fourth international symposium of fire safety science (pp. 761-772)
    • Ishii, H., Ono, T., Yamauchi, Y., & Ohtani, S. (1993). Fire detection system by multi-layered neural network with delay circuit. In Proceedings of the fourth international symposium of fire safety science (pp. 761-772)
  • 17
    • 0000293377 scopus 로고
    • Backpropagation learning for multi-layer feed-forward neural networks using the conjugate gradient method
    • Johansson E.M., Dowla F.U., and Goodman D.M. Backpropagation learning for multi-layer feed-forward neural networks using the conjugate gradient method. International Journal of Neural Systems 2 4 (1992) 291-301
    • (1992) International Journal of Neural Systems , vol.2 , Issue.4 , pp. 291-301
    • Johansson, E.M.1    Dowla, F.U.2    Goodman, D.M.3
  • 18
    • 40649114869 scopus 로고    scopus 로고
    • Jones, W. W. (2004). Development of a multi-criteria algorithm for fast and reliable fire detection. In Proceedings of the thirteenth international conference on automatic fire detection (AUBE'04) (pp. 184-195)
    • Jones, W. W. (2004). Development of a multi-criteria algorithm for fast and reliable fire detection. In Proceedings of the thirteenth international conference on automatic fire detection (AUBE'04) (pp. 184-195)
  • 19
    • 0025403609 scopus 로고
    • Improvement of the backpropagation algorithm for training neural networks
    • Leonard J., and Kramer M.A. Improvement of the backpropagation algorithm for training neural networks. Computers Chemical Engineering 14 3 (1990) 337-341
    • (1990) Computers Chemical Engineering , vol.14 , Issue.3 , pp. 337-341
    • Leonard, J.1    Kramer, M.A.2
  • 20
    • 0006471337 scopus 로고
    • Analysis of signature patterns for discriminating fire detection with multiple sensors
    • Milke J.A., and McAvoy T.J. Analysis of signature patterns for discriminating fire detection with multiple sensors. Fire Technology 31 2 (1995) 120-136
    • (1995) Fire Technology , vol.31 , Issue.2 , pp. 120-136
    • Milke, J.A.1    McAvoy, T.J.2
  • 21
    • 40649097147 scopus 로고    scopus 로고
    • Milke, J. A. (1995). An application of neural networks for discriminating fire detectors. In Proceedings of the international conference on automatic fire detection (AUBE'95) (pp. 213-222)
    • Milke, J. A. (1995). An application of neural networks for discriminating fire detectors. In Proceedings of the international conference on automatic fire detection (AUBE'95) (pp. 213-222)
  • 22
    • 40649129127 scopus 로고    scopus 로고
    • NeuralWorks Professional II/PLUS. (1999). Carnegie, PA, NeuralWare Inc., http://www.neuralware.com
    • NeuralWorks Professional II/PLUS. (1999). Carnegie, PA, NeuralWare Inc., http://www.neuralware.com
  • 23
    • 85041951892 scopus 로고    scopus 로고
    • Okayama, Y. (1991a). Approach to detection of fire in their very early stage by odor sensors and neural net. In Proceedings of third international symposium of fire safety science (pp. 955-964)
    • Okayama, Y. (1991a). Approach to detection of fire in their very early stage by odor sensors and neural net. In Proceedings of third international symposium of fire safety science (pp. 955-964)
  • 24
    • 0025798784 scopus 로고
    • A primitive study of a fire detection method controlled by artificial neural net
    • Okayama Y. A primitive study of a fire detection method controlled by artificial neural net. Fire Safety Journal 17 (1991) 535-553
    • (1991) Fire Safety Journal , vol.17 , pp. 535-553
    • Okayama, Y.1
  • 25
    • 40649086304 scopus 로고    scopus 로고
    • Schuler, F. (1998). Dual wavelength fire detection method and apparatus. US patent no. 5, 850, 182
    • Schuler, F. (1998). Dual wavelength fire detection method and apparatus. US patent no. 5, 850, 182
  • 26
    • 40649112226 scopus 로고    scopus 로고
    • Spectrex, Inc. (2005). Sharpeye 20/20I triple IR flame detector. http://www.spectrex-inc.com
    • Spectrex, Inc. (2005). Sharpeye 20/20I triple IR flame detector. http://www.spectrex-inc.com
  • 28
    • 40649094871 scopus 로고    scopus 로고
    • Thuillard, M. P. (2000). Method for analyzing the signals of a danger alarm system and danger alarm system for implementing said method. US patent no. 6, 011, 464
    • Thuillard, M. P. (2000). Method for analyzing the signals of a danger alarm system and danger alarm system for implementing said method. US patent no. 6, 011, 464
  • 29
    • 40649090747 scopus 로고    scopus 로고
    • Underwriters Laboratories Canada (ULC) Standard ULC/ORD-C386. (1990). "Flame Detectors". http://www.ulc.ca
    • Underwriters Laboratories Canada (ULC) Standard ULC/ORD-C386. (1990). "Flame Detectors". http://www.ulc.ca
  • 30
    • 0032632647 scopus 로고    scopus 로고
    • Zielinski, T. P. (1999). Joint time-frequency resolution of signal analysis using Gabor transform. In Proceedings of the 16th IEEE instrumentation and measurement technology conference, 2 (pp. 1183-1188)
    • Zielinski, T. P. (1999). Joint time-frequency resolution of signal analysis using Gabor transform. In Proceedings of the 16th IEEE instrumentation and measurement technology conference, 2 (pp. 1183-1188)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.