-
1
-
-
0000760267
-
-
M.A. Kasevich, E. Riis, S. Chu, and R.G. DeVoe, Phys. Rev. Lett. 63, 612 (1989).
-
(1989)
Phys. Rev. Lett.
, vol.63
, pp. 612
-
-
Kasevich, M.A.1
Riis, E.2
Chu, S.3
DeVoe, R.G.4
-
2
-
-
77956703911
-
-
R. Grimm, M. Weidemuller, and Y.B. Ovchinnikov, Adv. At., Mol., Opt. Phys. 42, 95 (2000).
-
(2000)
Adv. At., Mol., Opt. Phys.
, vol.42
, pp. 95
-
-
Grimm, R.1
Weidemuller, M.2
Ovchinnikov, Y.B.3
-
3
-
-
0000986952
-
-
S. Chu, J.E. Bjorkholm, A. Ashkin, and A. Cable; Phys. Rev. Lett. 57, 314 (1986).
-
(1986)
Phys. Rev. Lett.
, vol.57
, pp. 314
-
-
Chu, S.1
Bjorkholm, J.E.2
Ashkin, A.3
Cable, A.4
-
5
-
-
3743121064
-
-
N. Davidson, H.J. Lee, C.S. Adams, M. Kasevich, and S. Chu, Phys. Rev. Lett. 74, 1311 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 1311
-
-
Davidson, N.1
Lee, H.J.2
Adams, C.S.3
Kasevich, M.4
Chu, S.5
-
6
-
-
0000937568
-
-
C.S. Adams, H.J. Lee, N. Davidson, M. Kasevich, and S. Chu, Phys. Rev. Lett. 74, 3577 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 3577
-
-
Adams, C.S.1
Lee, H.J.2
Davidson, N.3
Kasevich, M.4
Chu, S.5
-
10
-
-
0034226816
-
-
S.J.M. Kuppens, K.L. Corwin, K.W. Miller, T.E. Chupp, and C.E. Wieman, Phys. Rev. A 62, 013406 (1999).
-
(1999)
Phys. Rev. A
, vol.62
, pp. 013406
-
-
Kuppens, S.J.M.1
Corwin, K.L.2
Miller, K.W.3
Chupp, T.E.4
Wieman, C.E.5
-
11
-
-
0033704197
-
-
T. Ido, Y. Isoya, and H. Katori, Phys. Rev. A 61, 061403 (2000); H. Katori, T. Ido, and M.K. Gonokami, J. Phys. Soc. Jpn. 68, 2479 (1999).
-
(2000)
Phys. Rev. A
, vol.61
, pp. 061403
-
-
Ido, T.1
Isoya, Y.2
Katori, H.3
-
12
-
-
0033471214
-
-
T. Ido, Y. Isoya, and H. Katori, Phys. Rev. A 61, 061403 (2000); H. Katori, T. Ido, and M.K. Gonokami, J. Phys. Soc. Jpn. 68, 2479 (1999).
-
(1999)
J. Phys. Soc. Jpn.
, vol.68
, pp. 2479
-
-
Katori, H.1
Ido, T.2
Gonokami, M.K.3
-
13
-
-
85015795183
-
-
note
-
This is true when the position of each atom is fixed in time, and only an approximation for the more realistic case where the atoms move during the interrogation time.
-
-
-
-
15
-
-
85015806811
-
-
note
-
HF/2, yielding a straightforward modification of Eqs. (5 and 6); however, choosing δ=0 minimizes spontaneous photon scattering.
-
-
-
-
16
-
-
85015769416
-
-
note
-
A similar calculation can be made which also takes into account also the contribution of the D1 transition, and introduces only a small correction to Eq. (6).
-
-
-
-
17
-
-
85015793714
-
-
note
-
-7 in our experiment, the beams are separated by two gratings and two pinholes before their power can be measured independently.
-
-
-
-
20
-
-
0028371204
-
-
R.A. Cline, J.D. Miller, M.R. Matthews, and D.J. Heinzen, Opt. Lett. 19, 207 (1994).
-
(1994)
Opt. Lett.
, vol.19
, pp. 207
-
-
Cline, R.A.1
Miller, J.D.2
Matthews, M.R.3
Heinzen, D.J.4
-
21
-
-
85015789667
-
-
note
-
All four |F=2,m ≠ 0〉 states are populated and contribute to the spontaneous Raman scattering background, which is hence five times larger than that of an ideal two-level system.
-
-
-
-
22
-
-
33646205578
-
-
C. Chin, V. Leiber, V. Vuletic, A.J. Kerman, and S. Chu, Phys. Rev. A 63, 033401 (2001).
-
(2001)
Phys. Rev. A
, vol.63
, pp. 033401
-
-
Chin, C.1
Leiber, V.2
Vuletic, V.3
Kerman, A.J.4
Chu, S.5
|