-
1
-
-
0001920261
-
Functionally graded materials and nanocomposites
-
J. B. Holt (ed.), The American Ceramic Society, Westville, OH
-
T. Hirai, Functionally Graded Materials and Nanocomposites, in J. B. Holt (ed.), Ceramic Transactions, The American Ceramic Society, Westville, OH, vol. 34, pp. 11-20, 1993.
-
(1993)
Ceramic Transactions
, vol.34
, pp. 11-20
-
-
Hirai, T.1
-
3
-
-
0033908920
-
Analysis of functionally graded plates
-
J. N. Reddy, Analysis of Functionally Graded Plates, Int. J. Numer. Method Eng., vol. 47, pp. 663-684, 2000.
-
(2000)
Int. J. Numer. Method Eng.
, vol.47
, pp. 663-684
-
-
Reddy, J.N.1
-
4
-
-
0035304158
-
An elasticity solution for functionally graded beams
-
B. V. Sankar, An Elasticity Solution for Functionally Graded Beams, Compos. Sci. Technol., vol. 61, pp. 689-696, 2001.
-
(2001)
Compos. Sci. Technol.
, vol.61
, pp. 689-696
-
-
Sankar, B.V.1
-
5
-
-
0033718156
-
Vibration characteristics of functionally graded cylindrical shells under various boundary conditions
-
S. C. Pradhan, C. T. Loy, K. Y. Lam, and J. N. Reddy, Vibration Characteristics of Functionally Graded Cylindrical Shells Under Various Boundary Conditions, Appl. Acoust., vol. 61, pp. 111-129, 2000.
-
(2000)
Appl. Acoust.
, vol.61
, pp. 111-129
-
-
Pradhan, S.C.1
Loy, C.T.2
Lam, K.Y.3
Reddy, J.N.4
-
6
-
-
18444391317
-
Exact solution for the cylindrical bending of vibration of functionally graded plates
-
Seventeenth Technical Conference, Purdue University, West Lafayette, Indiana, Oct. 21-23
-
S. S. Vel and R. C. Batra, Exact Solution for the Cylindrical Bending of Vibration of Functionally Graded Plates, Proceedings of the American Society for Composites, Seventeenth Technical Conference, Purdue University, West Lafayette, Indiana, Oct. 21-23, 2002.
-
(2002)
Proceedings of the American Society for Composites
-
-
Vel, S.S.1
Batra, R.C.2
-
7
-
-
0037431384
-
Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels
-
J. Jang and H. S. Shen, Free Vibration and Parametric Resonance of Shear Deformable Functionally Graded Cylindrical Panels, J. Sound Vib., vol. 261, pp. 871-893, 2003.
-
(2003)
J. Sound Vib.
, vol.261
, pp. 871-893
-
-
Jang, J.1
Shen, H.S.2
-
8
-
-
0242416144
-
Dispersion of waves and characteristic wave surfaces in functionally graded piezoelectric plates
-
G. R. Liu, K. Y. Dai, X. Han, and T. Ohyoshi, Dispersion of Waves and Characteristic Wave Surfaces in Functionally Graded Piezoelectric Plates, J. Sound Vib., vol. 268, pp. 131-147, 2003.
-
(2003)
J. Sound Vib.
, vol.268
, pp. 131-147
-
-
Liu, G.R.1
Dai, K.Y.2
Han, X.3
Ohyoshi, T.4
-
9
-
-
0036809397
-
Static and dynamic analysis of a gradient-elastic bar in tension
-
K. G. Tsepoura, S. Papargyri-Beskou, D. Polyzos, and D. E. Beskos, Static and Dynamic Analysis of a Gradient-Elastic Bar in Tension, Arch. Appl. Mech., vol. 72, pp. 483-497, 2002.
-
(2002)
Arch. Appl. Mech.
, vol.72
, pp. 483-497
-
-
Tsepoura, K.G.1
Papargyri-Beskou, S.2
Polyzos, D.3
Beskos, D.E.4
-
11
-
-
0345869777
-
Über die Berechnung auf Knickfestigkeit beanspruchten Stäbe aus Schweiß- Und Guß
-
German
-
F. Engesser, Über die Berechnung auf Knickfestigkeit beanspruchten Stäbe aus Schweiß- und Guß, Z. Österr. Ing. Arch. Ver., no. 45, pp. 506-508, 1893 (German).
-
(1893)
Z. Österr. Ing. Arch. Ver.
, Issue.45
, pp. 506-508
-
-
Engesser, F.1
-
12
-
-
0008488024
-
Galerkin's method in mechanics and differential equations
-
London, England
-
W. J. Duncan, Galerkin's Method in Mechanics and Differential Equations, Aeronautical Research Committe, Reports and Memoranda 1798, London, England, 1937.
-
(1937)
Aeronautical Research Committe, Reports and Memoranda
, vol.1798
-
-
Duncan, W.J.1
-
13
-
-
0001463538
-
New closed-form solutions for buckling of a variable stiffness column by mathematica®
-
I. Elishakoff and O. Rollot, New Closed-Form Solutions for Buckling of a Variable Stiffness Column by Mathematica®, J. Sound Vib., vol. 224, pp. 172-182, 1999.
-
(1999)
J. Sound Vib.
, vol.224
, pp. 172-182
-
-
Elishakoff, I.1
Rollot, O.2
-
14
-
-
0343254191
-
Infinite number of closed-form solutions exist for frequencies and reliabilities of stochastically nonhomogeneous beams
-
R. Melchers and M. G. Stewart (eds.), Balkema Publishers, Rotterdam
-
S. Candan and I. Elishakoff, Infinite Number of Closed-Form Solutions Exist for Frequencies and Reliabilities of Stochastically Nonhomogeneous Beams, in R. Melchers and M. G. Stewart (eds.), Applications of Probability and Statistics, pp. 1059-1067, Balkema Publishers, Rotterdam, 1999.
-
(1999)
Applications of Probability and Statistics
, pp. 1059-1067
-
-
Candan, S.1
Elishakoff, I.2
|