메뉴 건너뛰기




Volumn 43, Issue 2, 2003, Pages 297-317

A general scheme for shape preserving planar interpolating curves

Author keywords

Abstract schemes; Fairness functional; Interpolation; Shape preservation; Splines

Indexed keywords


EID: 4043107687     PISSN: 00063835     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1026035128791     Document Type: Article
Times cited : (8)

References (31)
  • 6
    • 84966241136 scopus 로고
    • On monotone and convex spline interpolation
    • P. Costantini, On monotone and convex spline interpolation, Math. Comp., 46 (1986), pp. 203-214.
    • (1986) Math. Comp. , vol.46 , pp. 203-214
    • Costantini, P.1
  • 7
    • 0023994975 scopus 로고
    • An algorithm for computing shape preserving splines of arbitrary degree
    • P. Costantini, An algorithm for computing shape preserving splines of arbitrary degree, J. Comput. Appl. Math., 22 (1988), pp. 89-136.
    • (1988) J. Comput. Appl. Math. , vol.22 , pp. 89-136
    • Costantini, P.1
  • 8
    • 0039160064 scopus 로고
    • A general method for constrained curves with boundary conditions
    • K. Jetter e F. I. Utreras, eds., World Scientific Publishing Co., Singapore
    • P. Costantini, A general method for constrained curves with boundary conditions, in Multivariate Approximation: from CAGD to Wavelets, K. Jetter e F. I. Utreras, eds., World Scientific Publishing Co., Singapore, 1993, pp. 91-108.
    • (1993) Multivariate Approximation: From CAGD to Wavelets , pp. 91-108
    • Costantini, P.1
  • 9
    • 0040857446 scopus 로고    scopus 로고
    • Abstract schemes for functional shape-preserving interpolation
    • J. Hoschek and P. Kaklis, eds., B. G. Teubner, Stuttgart
    • P. Costantini, Abstract schemes for functional shape-preserving interpolation, in Advanced Course on FAIRSHAPE, J. Hoschek and P. Kaklis, eds., B. G. Teubner, Stuttgart, 1996, pp. 185-199.
    • (1996) Advanced Course on FAIRSHAPE , pp. 185-199
    • Costantini, P.1
  • 10
    • 0031153379 scopus 로고    scopus 로고
    • Boundary-valued shape-preserving interpolating splines
    • P. Costantini, Boundary-valued shape-preserving interpolating splines, ACM Trans. Math. Software, 23:2 (1997), pp. 229-251.
    • (1997) ACM Trans. Math. Software , vol.23 , Issue.2 , pp. 229-251
    • Costantini, P.1
  • 11
    • 0031153346 scopus 로고    scopus 로고
    • Algorithm 770: BVSPIS-A package for computing boundary-valued shape-preserving interpolating splines
    • P. Costantini, Algorithm 770: BVSPIS-A package for computing boundary-valued shape-preserving interpolating splines, ACM Trans. Math. Software, 23:2 (1997), pp. 252-254.
    • (1997) ACM Trans. Math. Software , vol.23 , Issue.2 , pp. 252-254
    • Costantini, P.1
  • 12
    • 0035602389 scopus 로고    scopus 로고
    • Shape-preserving approximation by space curves
    • P. Costantini and F. Pelosi, Shape-preserving approximation by space curves, Numer. Algorithms, 27 (2001), pp. 237-264.
    • (2001) Numer. Algorithms , vol.27 , pp. 237-264
    • Costantini, P.1    Pelosi, F.2
  • 13
    • 0345706908 scopus 로고    scopus 로고
    • Abstract schemes and constrained curve interpolation
    • H. Nowacki and P. Kaklis, eds., B. G. Teubner, Stuttgart
    • P. Costantini and M. L. Sampoli, Abstract schemes and constrained curve interpolation, in Designing and Creating Shape-Preserving Curves and Surfaces, H. Nowacki and P. Kaklis, eds., B. G. Teubner, Stuttgart, 1998, pp. 121-130.
    • (1998) Designing and Creating Shape-Preserving Curves and Surfaces , pp. 121-130
    • Costantini, P.1    Sampoli, M.L.2
  • 14
    • 4043055497 scopus 로고    scopus 로고
    • 3 by abstract schemes
    • to appear, T. Lyche, M.-L. Mazure and L. Schumaker, eds., Nashboro Press, Brentwood
    • 3 by abstract schemes, to appear in Curve and Surface Design: Saint-Malo 2002, T. Lyche, M.-L. Mazure and L. Schumaker, eds., Nashboro Press, Brentwood, 2003, pp. 93-102.
    • (2003) Curve and Surface Design: Saint-Malo 2002 , pp. 93-102
    • Costantini, P.1    Sampoli, M.L.2
  • 15
    • 0001476603 scopus 로고
    • Monotone piecewise cubic interpolation
    • R. E. Carlson and F. N. Fritsch, Monotone piecewise cubic interpolation, SIAM J. Numer. Anal. 17 (1980), pp. 238-246.
    • (1980) SIAM J. Numer. Anal. , vol.17 , pp. 238-246
    • Carlson, R.E.1    Fritsch, F.N.2
  • 17
    • 0038621096 scopus 로고
    • Shape preserving interpolation by parametrically defined curves
    • T. N. T. Goodman and K. Unsworth, Shape preserving interpolation by parametrically defined curves, SIAM J. Numer. Anal. 25 (1988), pp. 1451-1465.
    • (1988) SIAM J. Numer. Anal. , vol.25 , pp. 1451-1465
    • Goodman, T.N.T.1    Unsworth, K.2
  • 19
    • 0029244197 scopus 로고
    • Convexity preserving polynomial splines of non uniform degree
    • P. D. Kaklis and N. S. Sapidis, Convexity preserving polynomial splines of non uniform degree, Comput Aided Geom. Design 12 (1995), pp. 1-26.
    • (1995) Comput Aided Geom. Design , vol.12 , pp. 1-26
    • Kaklis, P.D.1    Sapidis, N.S.2
  • 21
    • 0031251196 scopus 로고    scopus 로고
    • Shape-preserving least-squares approximation by polynomial parametric spline curves
    • B. Jüttler, Shape-preserving least-squares approximation by polynomial parametric spline curves, Comput. Aided Geom. Design 14 (1997), pp. 731-747.
    • (1997) Comput. Aided Geom. Design , vol.14 , pp. 731-747
    • Jüttler, B.1
  • 22
    • 0042090042 scopus 로고    scopus 로고
    • A geometric approach for knot selection in convexity-preserving spline approximation
    • P. J. Laurent, P. Sablonniere, and L. L. Schumaker, eds., Vanderbilt University Press, Nashville
    • R. Morandi, D. Scaramelli and A. Sestini, A geometric approach for knot selection in convexity-preserving spline approximation, in Curve and Surface Design, Saint Malo 1999. P. J. Laurent, P. Sablonniere, and L. L. Schumaker, eds., Vanderbilt University Press, Nashville, 2000, pp. 287-296.
    • (2000) Curve and Surface Design, Saint Malo 1999 , pp. 287-296
    • Morandi, R.1    Scaramelli, D.2    Sestini, A.3
  • 23
    • 0033437118 scopus 로고    scopus 로고
    • Convex interval interpolation using three-term staircase algorithm
    • B. Mulansky and J. W. Schmidt, Convex interval interpolation using three-term staircase algorithm, Numer. Math. 82 (1999), pp. 313-337.
    • (1999) Numer. Math. , vol.82 , pp. 313-337
    • Mulansky, B.1    Schmidt, J.W.2
  • 24
    • 0034421629 scopus 로고    scopus 로고
    • Composition based staircase algorithm and constrained interpolation with boundary conditions
    • B. Mulansky and J. W. Schmidt, Composition based staircase algorithm and constrained interpolation with boundary conditions, Numer. Math. 85 (2000), pp. 387-408.
    • (2000) Numer. Math. , vol.85 , pp. 387-408
    • Mulansky, B.1    Schmidt, J.W.2
  • 28
    • 0040262981 scopus 로고
    • Schwach verkoppelte ungleichungssysteme und konvexe spline-interpolation
    • W. Heßand J. W. Schimdt, Schwach verkoppelte Ungleichungssysteme und konvexe Spline-Interpolation, Elem. Math. 39 (1984), pp. 85-96.
    • (1984) Elem. Math. , vol.39 , pp. 85-96
    • Heß, W.1    Schimdt, J.W.2
  • 29
    • 4043091021 scopus 로고
    • On shape-preserving spline interpolation: Existence theorems and determination of optimal splines
    • PWN-Polish Scientific Publishers, Warsaw
    • J. W. Schimdt, On shape-preserving spline interpolation: Existence theorems and determination of optimal splines, in Approximation and Function Spaces, Vol. 22 PWN-Polish Scientific Publishers, Warsaw, 1989.
    • (1989) Approximation and Function Spaces , vol.22
    • Schimdt, J.W.1
  • 31
    • 85171972993 scopus 로고
    • An interpolation curve using a spline in tension
    • D. G. Schweikert, An interpolation curve using a spline in tension, J. Math. Phys., 45, (1966), pp. 312-317.
    • (1966) J. Math. Phys. , vol.45 , pp. 312-317
    • Schweikert, D.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.