-
7
-
-
0032554063
-
-
Ujaque G., Cooper A.C., Maseras F., Eisenstein O., Caulton K.G. J. Am. Chem. Soc. 120:1998;361.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 361
-
-
Ujaque, G.1
Cooper, A.C.2
Maseras, F.3
Eisenstein, O.4
Caulton, K.G.5
-
9
-
-
0000892619
-
-
Svensson M., Humbel S., Froese R.D.J., Sieber S., Matsubara T., Morokuma K. J. Phys. Chem. 100:1996;19375.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 19375
-
-
Svensson, M.1
Humbel, S.2
Froese, R.D.J.3
Sieber, S.4
Matsubara, T.5
Morokuma, K.6
-
10
-
-
0030817630
-
-
Bobrowski K., Hug G.L., Marciniak B., Miller B., Schöneich C. J. Am. Chem. Soc. 119:1997;8000.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 8000
-
-
Bobrowski, K.1
Hug, G.L.2
Marciniak, B.3
Miller, B.4
Schöneich, C.5
-
12
-
-
0001608194
-
-
Deng Y., Illies A.J., James M.A., McKee M.L., Peschke M. J. Am. Chem. Soc. 117:1995;420.
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 420
-
-
Deng, Y.1
Illies, A.J.2
James, M.A.3
McKee, M.L.4
Peschke, M.5
-
19
-
-
0031560545
-
-
The additivity of basis set effects in methods such as G2 uses the same kind of integrated scheme although these methods always consider a unique system. The IMOMO method and the G2 approach have been linked together in the IMOMO-G2MS scheme, see
-
The additivity of basis set effects in methods such as G2 uses the same kind of integrated scheme although these methods always consider a unique system. The IMOMO method and the G2 approach have been linked together in the IMOMO-G2MS scheme, see R.D.J. Froese, S. Humbel, M. Svensson, K. Morokuma, J. Phys. Chem. A 101 (1997) 227.
-
(1997)
J. Phys. Chem. A
, vol.101
, pp. 227
-
-
Froese, R.D.J.1
Humbel, S.2
Svensson, M.3
Morokuma, K.4
-
20
-
-
0009653940
-
-
This question arose when we evaluated the epoxidation PES of benzene which was modeled using ethylene (aromaticity was broken by the partition scheme). See ref. [2]. In that case, the IMOMO results were quite inaccurate (ca. 4 kcal/mol error). However, various epoxidations of hexatriene (conjugated but nonaromatic) showed a very nice behavior of the IMOMO scheme: personal communication
-
This question arose when we evaluated the epoxidation PES of benzene which was modeled using ethylene (aromaticity was broken by the partition scheme). See ref. [2]. In that case, the IMOMO results were quite inaccurate (ca. 4 kcal/mol error). However, various epoxidations of hexatriene (conjugated but nonaromatic) showed a very nice behavior of the IMOMO scheme: M. Svensson, personal communication, 1996; C. Legrand, S. Humbel, unpublished results, 1997.
-
(1996)
-
-
Svensson, M.1
-
21
-
-
0009578053
-
-
unpublished results
-
This question arose when we evaluated the epoxidation PES of benzene which was modeled using ethylene (aromaticity was broken by the partition scheme). See ref. [2]. In that case, the IMOMO results were quite inaccurate (ca. 4 kcal/mol error). However, various epoxidations of hexatriene (conjugated but nonaromatic) showed a very nice behavior of the IMOMO scheme: M. Svensson, personal communication, 1996; C. Legrand, S. Humbel, unpublished results, 1997.
-
(1997)
-
-
Legrand, C.1
Humbel, S.2
-
22
-
-
0004133516
-
-
Revision E.2, Gaussian Inc., Pittsburgh, PA
-
M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski, B.B. Stefanov, A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalez, J.A. Pople, Gaussian 94, Revision E.2, Gaussian Inc., Pittsburgh, PA, 1995.
-
(1995)
Gaussian 94
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Gill, P.M.W.4
Johnson, B.G.5
Robb, M.A.6
Cheeseman, J.R.7
Keith, T.8
Petersson, G.A.9
Montgomery, J.A.10
Raghavachari, K.11
Al-Laham, M.A.12
Zakrzewski, V.G.13
Ortiz, J.V.14
Foresman, J.B.15
Cioslowski, J.16
Stefanov, B.B.17
Nanayakkara, A.18
Challacombe, M.19
Peng, C.Y.20
Ayala, P.Y.21
Chen, W.22
Wong, M.W.23
Andres, J.L.24
Replogle, E.S.25
Gomperts, R.26
Martin, R.L.27
Fox, D.J.28
Binkley, J.S.29
Defrees, D.J.30
Baker, J.31
Stewart, J.P.32
Head-Gordon, M.33
Gonzalez, C.34
Pople, J.A.35
more..
-
23
-
-
0030732055
-
-
Recent studies on this system considered the use of at least three valence bond structures. See for instance
-
Recent studies on this system considered the use of at least three valence bond structures. See for instance D. Lauvergnat, P.C. Hiberty, J. Am. Chem. Soc. 119 (1997) 9478.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 9478
-
-
Lauvergnat, D.1
Hiberty, P.C.2
-
24
-
-
36449001370
-
-
As leading reference see
-
As leading reference see P.J. Knowles, J. Chem. Phys. 99 (1993) 5219.
-
(1993)
J. Chem. Phys.
, vol.99
, pp. 5219
-
-
Knowles, P.J.1
-
25
-
-
0001307076
-
-
Nobes R.H., Pople J.A., Radom L., Handy N.C., Knowles P.J. Chem. Phys. Lett. 138:1987;481.
-
(1987)
Chem. Phys. Lett.
, vol.138
, pp. 481
-
-
Nobes, R.H.1
Pople, J.A.2
Radom, L.3
Handy, N.C.4
Knowles, P.J.5
-
27
-
-
0009653941
-
-
Following G94 User's manual, where O is the number of occupied orbital, N is the number of basis functions. This disk requirement may render very large calculations which very quickly become not possible at the CCSD level as the size of the basis set (N) increases
-
Following G94 User's manual, where O is the number of occupied orbital, N is the number of basis functions. This disk requirement may render very large calculations which very quickly become not possible at the CCSD level as the size of the basis set (N) increases.
-
-
-
|