-
1
-
-
2442439188
-
Mémoire sur la loi des modifications que la réflexion imprime à la lumière polarisée
-
H. Senarmont, E. Verdet, and A. Fresnel, Johnson Reprint Corporation, New York, 1965
-
A. Fresnel, "Mémoire sur la loi des modifications que la réflexion imprime à la lumière polarisée," in Ouvres Complète de Fresnel, Vol. 1, H. Senarmont, E. Verdet, and A. Fresnel, 1866, pp. 767-775 (Johnson Reprint Corporation, New York, 1965).
-
(1866)
Ouvres Complète de Fresnel
, vol.1
, pp. 767-775
-
-
Fresnel, A.1
-
4
-
-
84975659949
-
Relations between amplitude reflectances and phase shifts of the p and s polarizations when electromagnetic radiation strikes interfaces between transparent media
-
R. M. A. Azzam, "Relations between amplitude reflectances and phase shifts of the p and s polarizations when electromagnetic radiation strikes interfaces between transparent media," Appl. Opt. 18, 1884-1886 (1979).
-
(1979)
Appl. Opt.
, vol.18
, pp. 1884-1886
-
-
Azzam, R.M.A.1
-
5
-
-
4043053142
-
Un théoreme relatif à la réflexion métallique
-
F. Abelès, "Un théoreme relatif à la réflexion métallique," C. R. Hebd. Seances Acad. Sci. 230, 1942-1943 (1950).
-
(1950)
C. R. Hebd. Seances Acad. Sci.
, vol.230
, pp. 1942-1943
-
-
Abelès, F.1
-
6
-
-
0006565870
-
The penetration of totally reflected light into the rarer medium
-
E. E. Hall, "The penetration of totally reflected light into the rarer medium," Phys. Rev. 15, 73-106 (1902).
-
(1902)
Phys. Rev.
, vol.15
, pp. 73-106
-
-
Hall, E.E.1
-
7
-
-
84975542277
-
Optical tunneling and its application to optical filters
-
P. W. Baumeister, "Optical tunneling and its application to optical filters," Appl. Opt. 6, 897-905 (1967).
-
(1967)
Appl. Opt.
, vol.6
, pp. 897-905
-
-
Baumeister, P.W.1
-
8
-
-
84975580386
-
Infrared modulation by means of frustrated total internal reflection
-
R. W. Astheimer, G. Falbel, and S. Minkowitz, "Infrared modulation by means of frustrated total internal reflection," Appl. Opt. 5, 87-91 (1966).
-
(1966)
Appl. Opt.
, vol.5
, pp. 87-91
-
-
Astheimer, R.W.1
Falbel, G.2
Minkowitz, S.3
-
9
-
-
0019702157
-
Contours of constant principal angle and constant principal azimuth in the complex ε plane
-
R. M. A. Azzam, "Contours of constant principal angle and constant principal azimuth in the complex ε plane," J. Opt. Soc. Am. 71, 1523-1528 (1981).
-
(1981)
J. Opt. Soc. Am.
, vol.71
, pp. 1523-1528
-
-
Azzam, R.M.A.1
-
10
-
-
0003069254
-
Polarization
-
W. G. Driscoll and W. Vaughan, eds., McGraw Hill, New York, Sect. 10
-
J. Bennett and H. E. Bennett, "Polarization," in Handbook of Optics, W. G. Driscoll and W. Vaughan, eds. (McGraw Hill, New York, 1978), Sect. 10.
-
(1978)
Handbook of Optics
-
-
Bennett, J.1
Bennett, H.E.2
-
11
-
-
84942362685
-
-
For any N, Eq. (20) also has a trivial solution at φc, where all phase shifts are zero
-
For any N, Eq. (20) also has a trivial solution at φc, where all phase shifts are zero.
-
-
-
-
12
-
-
84942362686
-
-
From Eq. (26) we also obtain cos2 φm = (N2 - 1)/(N2 + 1) = -cos(2φB), which provides a direct relation between the incidence angle of maximum TIR differential phase shift φm and the Brewster angle of external reflection φB
-
From Eq. (26) we also obtain cos2 φm = (N2 - 1)/(N2 + 1) = -cos(2φB), which provides a direct relation between the incidence angle of maximum TIR differential phase shift φm and the Brewster angle of external reflection φB.
-
-
-
-
13
-
-
84942362687
-
-
From Eqs. (35) and (26) it is readily verified that sin2(Δφ)< sin2(90° - φm) = cos2 φm, so that Δφ = φm - φc < 90° - φm. This proves that φm is always closer to the critical angle than it is to grazing incidence (90°), consistent with Figs. 1 and 3
-
From Eqs. (35) and (26) it is readily verified that sin2(Δφ)< sin2(90° - φm) = cos2 φm, so that Δφ = φm - φc < 90° - φm. This proves that φm is always closer to the critical angle than it is to grazing incidence (90°), consistent with Figs. 1 and 3.
-
-
-
-
14
-
-
84942362688
-
-
Equation (40) can also be obtained by substituting (1 - ρ )2/(1 + ρ)2 = -tan2(Δ/2), when ρ = exp(jΔ), in Eq. (4.20a) of Ref. 3
-
Equation (40) can also be obtained by substituting (1 - ρ)2/(1 + ρ)2 = -tan2(Δ/2), when ρ = exp(jΔ), in Eq. (4.20a)
-
-
-
|