메뉴 건너뛰기




Volumn 275, Issue 6, 2008, Pages 1118-1130

Paralog of the formylglycine-generating enzyme - Retention in the endoplasmic reticulum by canonical and noncanonical signals

Author keywords

Endoplasmic reticulum; Formylglycine generating enzyme; KDEL receptor; Protein retention; SUMF2

Indexed keywords

AMINO ACID RECEPTOR; ASPARTIC ACID; CYSTEINE; FORMYLGLYCINE; FORMYLGLYCINE GENERATING ENZYME; GLUTAMIC ACID; GLYCINE; LEUCINE; LYSINE; LYSYLASPARTYLGLUTAMYLLEUCINE; PROLINE; PROLYLGLYCYLGLUTAMYLLEUCINE; SECRETORY PROTEIN; SULFATASE; SULFATE; TETRAPEPTIDE; UNCLASSIFIED DRUG;

EID: 40349089112     PISSN: 1742464X     EISSN: 17424658     Source Type: Journal    
DOI: 10.1111/j.1742-4658.2008.06271.x     Document Type: Article
Times cited : (13)

References (44)
  • 1
    • 0029130352 scopus 로고
    • A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency
    • 1 Schmidt B, Selmer T, Ingendoh A & von Figura K (1995) A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell 82, 271–278.
    • (1995) Cell , vol.82 , pp. 271-278
    • Schmidt, B1    Selmer, T2    Ingendoh, A3    von Figura, K4
  • 2
    • 0029898602 scopus 로고    scopus 로고
    • The evolutionary conservation of a novel protein modification, the conversion of cysteine to serinesemialdehyde in arylsulfatase from Volvox carteri
    • 2 Selmer T, Hallmann A, Schmidt B, Sumper M & von Figura K (1996) The evolutionary conservation of a novel protein modification, the conversion of cysteine to serinesemialdehyde in arylsulfatase from Volvox carteri. Eur J Biochem 238, 341–345.
    • (1996) Eur J Biochem , vol.238 , pp. 341-345
    • Selmer, T1    Hallmann, A2    Schmidt, B3    Sumper, M4    von Figura, K5
  • 3
    • 0032570561 scopus 로고    scopus 로고
    • Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine
    • 3 Miech C, Dierks T, Selmer T, von Figura K & Schmidt B (1998) Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine. J Biol Chem 273, 4835–4837.
    • (1998) J Biol Chem , vol.273 , pp. 4835-4837
    • Miech, C1    Dierks, T2    Selmer, T3    von Figura, K4    Schmidt, B5
  • 4
    • 0032475864 scopus 로고    scopus 로고
    • Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine
    • 4 Dierks T, Miech C, Hummerjohann J, Schmidt B, Kertesz MA & von Figura K (1998) Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J Biol Chem 273, 25560–25564.
    • (1998) J Biol Chem , vol.273 , pp. 25560-25564
    • Dierks, T1    Miech, C2    Hummerjohann, J3    Schmidt, B4    Kertesz, MA5    von Figura, K6
  • 5
    • 0032104543 scopus 로고    scopus 로고
    • A novel protein modification generating an aldehyde group in sulfatases: its role in catalysis and disease
    • 5 von Figura K, Schmidt B, Selmer T & Dierks T (1998) A novel protein modification generating an aldehyde group in sulfatases: its role in catalysis and disease. BioEssays 20, 505–510.
    • (1998) BioEssays , vol.20 , pp. 505-510
    • von Figura, K1    Schmidt, B2    Selmer, T3    Dierks, T4
  • 6
    • 0034987576 scopus 로고    scopus 로고
    • 1.3 Å Crystal structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism for sulfate ester cleavage in the sulfatase family
    • 6 Boltes I, Czapinski H, Kahnert A, von Bülow R, Dierks T, Schmidt B, von Figura K, Kertesz MA & Usón I (2001) 1.3 Å Crystal structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism for sulfate ester cleavage in the sulfatase family. Structure 9, 483–491.
    • (2001) Structure , vol.9 , pp. 483-491
    • Boltes, I1    Czapinski, H2    Kahnert, A3    von Bülow, R4    Dierks, T5    Schmidt, B6    von Figura, K7    Kertesz, MA8    Usón, I9
  • 7
    • 0035847029 scopus 로고    scopus 로고
    • Crystal structure of an enzyme–substrate complex provides insight into the interaction between human arylsulfatase A and its substrates during catalysis
    • 7 von Bülow R, Schmidt B, Dierks T, von Figura K & Usón I (2001) Crystal structure of an enzyme–substrate complex provides insight into the interaction between human arylsulfatase A and its substrates during catalysis. J Mol Biol 305, 269–277.
    • (2001) J Mol Biol , vol.305 , pp. 269-277
    • von Bülow, R1    Schmidt, B2    Dierks, T3    von Figura, K4    Usón, I5
  • 8
    • 0032513051 scopus 로고    scopus 로고
    • Sulfatases: trapping of the sulfated enzyme intermediate by substituting the active site formylglycine
    • 8 Recksiek M, Selmer T, Dierks T, Schmidt B & von Figura K (1998) Sulfatases: trapping of the sulfated enzyme intermediate by substituting the active site formylglycine. J Biol Chem 273, 6096–6103.
    • (1998) J Biol Chem , vol.273 , pp. 6096-6103
    • Recksiek, M1    Selmer, T2    Dierks, T3    Schmidt, B4    von Figura, K5
  • 9
    • 0032539976 scopus 로고    scopus 로고
    • Crystal structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis
    • 9 Lukatela G, Krauss N, Theis K, Selmer T, Gieselmann V, von Figura K & Saenger W (1998) Crystal structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis. Biochemistry 37, 3654–3664.
    • (1998) Biochemistry , vol.37 , pp. 3654-3664
    • Lukatela, G1    Krauss, N2    Theis, K3    Selmer, T4    Gieselmann, V5    von Figura, K6    Saenger, W7
  • 10
    • 0030711751 scopus 로고    scopus 로고
    • Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum
    • 10 Dierks T, Schmidt B & von Figura K (1997) Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum. Proc Natl Acad Sci USA 94, 11963–11968.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 11963-11968
    • Dierks, T1    Schmidt, B2    von Figura, K3
  • 11
    • 0033561117 scopus 로고    scopus 로고
    • Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases
    • 11 Dierks T, Lecca MR, Schlotterhose P, Schmidt B & von Figura K (1999) Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases. EMBO J 18, 2084–2091.
    • (1999) EMBO J , vol.18 , pp. 2084-2091
    • Dierks, T1    Lecca, MR2    Schlotterhose, P3    Schmidt, B4    von Figura, K5
  • 12
    • 0037847425 scopus 로고    scopus 로고
    • Multiple sulfatase deficiency is caused by mutations in the gene encoding the human Cα‐formylglycine generating enzyme
    • 12 Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M & von Figura K (2003) Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C α ‐formylglycine generating enzyme. Cell 113, 435–444.
    • (2003) Cell , vol.113 , pp. 435-444
    • Dierks, T1    Schmidt, B2    Borissenko, LV3    Peng, J4    Preusser, A5    Mariappan, M6    von Figura, K7
  • 13
    • 0037509873 scopus 로고    scopus 로고
    • The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases
    • 13 Cosma MP, Pepe S, Annunziata I, Trott DA, Parenti G & Ballabio A (2003) The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 113, 445–456.
    • (2003) Cell , vol.113 , pp. 445-456
    • Cosma, MP1    Pepe, S2    Annunziata, I3    Trott, DA4    Parenti, G5    Ballabio, A6
  • 14
    • 19344367884 scopus 로고    scopus 로고
    • Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine‐generating enzyme
    • 14 Dierks T, Dickmanns A, Preusser‐Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R & Rudolph MG (2005) Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine‐generating enzyme. Cell 121, 541–552.
    • (2005) Cell , vol.121 , pp. 541-552
    • Dierks, T1    Dickmanns, A2    Preusser‐Kunze, A3    Schmidt, B4    Mariappan, M5    von, Figura K6    Ficner, R7    Rudolph, MG8
  • 16
    • 0001578843 scopus 로고    scopus 로고
    • Multiple sulfatase deficiency and the nature of the sulfatase family, in: The Metabolic and Molecular Bases of Inherited Disease
    • 16 Hopwood JJ & Ballabio A (2001) Multiple sulfatase deficiency and the nature of the sulfatase family. In The Metabolic and Molecular Bases of Inherited Disease ( Scriver CR, Beaudet AL, Valle D & Sly WS, eds), pp. 3725–3732. McGraw‐Hill, New York.
    • (2001) , pp. 3725-3732
    • Hopwood, JJ1    Ballabio, A2
  • 19
    • 34848837976 scopus 로고    scopus 로고
    • Multiple sulfatase deficiency is due to hypomorphic mutations of the SUMF1 gene
    • 19 Annunziata I, Bouche V, Lombardi A, Settembre C & Ballabio A (2007) Multiple sulfatase deficiency is due to hypomorphic mutations of the SUMF1 gene. Hum Mutat 28, 928.
    • (2007) Hum Mutat , vol.28 , pp. 928
    • Annunziata, I1    Bouche, V2    Lombardi, A3    Settembre, C4    Ballabio, A5
  • 20
    • 38849095352 scopus 로고    scopus 로고
    • Molecular analysis of SUMF1 mutations: stability and residual activity of mutant formylglycine‐generating enzyme determine disease severity in multiple sulfatase deficiency
    • 20 Schlotawa L, Steinfeld R, von Figura K, Dierks T & Gärtner J (2008) Molecular analysis of SUMF1 mutations: stability and residual activity of mutant formylglycine‐generating enzyme determine disease severity in multiple sulfatase deficiency. Hum Mutat 29, 205.
    • (2008) Hum Mutat , vol.29 , pp. 205
    • Schlotawa, L1    Steinfeld, R2    von Figura, K3    Dierks, T4    Gärtner, J5
  • 21
    • 0141922853 scopus 로고    scopus 로고
    • The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family that is conserved from pro‐ to eukaryotes
    • 21 Landgrebe J, Dierks T, Schmidt B & von Figura K (2003) The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family that is conserved from pro‐ to eukaryotes. Gene 316, 47–56.
    • (2003) Gene , vol.316 , pp. 47-56
    • Landgrebe, J1    Dierks, T2    Schmidt, B3    von Figura, K4
  • 22
    • 27744537538 scopus 로고    scopus 로고
    • Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship
    • 22 Sardiello M, Annunziata I, Roma G & Ballabio A (2005) Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship. Hum Mol Genet 14, 3203–3217.
    • (2005) Hum Mol Genet , vol.14 , pp. 3203-3217
    • Sardiello, M1    Annunziata, I2    Roma, G3    Ballabio, A4
  • 23
    • 17644413266 scopus 로고    scopus 로고
    • Expression, localization, structural and functional characterization of pFGE, the paralog of the Cα‐formylglycine generating enzyme
    • 23 Mariappan M, Preusser‐Kunze A, Balleininger M, Eiselt N, Schmidt B, Gande SL, Wenzel D, Dierks T & von Figura K (2005) Expression, localization, structural and functional characterization of pFGE, the paralog of the C α ‐formylglycine generating enzyme. J Biol Chem 280, 15173–15179.
    • (2005) J Biol Chem , vol.280 , pp. 15173-15179
    • Mariappan, M1    Preusser‐Kunze, A2    Balleininger, M3    Eiselt, N4    Schmidt, B5    Gande, SL6    Wenzel, D7    Dierks, T8    von Figura, K9
  • 24
    • 23744477714 scopus 로고    scopus 로고
    • Sulphatase activities are regulated by the interaction of sulphatase‐modifying factor 1 with SUMF2
    • 24 Zito E, Fraldi A, Pepe S, Annunziata I, Kobinger G, Di Natale P, Ballabio A & Cosma MP (2005) Sulphatase activities are regulated by the interaction of sulphatase‐modifying factor 1 with SUMF2. EMBO Rep 6, 655–660.
    • (2005) EMBO Rep , vol.6 , pp. 655-660
    • Zito, E1    Fraldi, A2    Pepe, S3    Annunziata, I4    Kobinger, G5    Di Natale, P6    Ballabio, A7    Cosma, MP8
  • 25
    • 17644370382 scopus 로고    scopus 로고
    • Crystal structure of human pFGE, the paralog of the Cα‐formylglycine generating enzyme
    • 25 Dickmanns A, Schmidt B, Rudolph MG, Mariappan M, Dierks T, von Figura K & Ficner R (2005) Crystal structure of human pFGE, the paralog of the C α ‐formylglycine generating enzyme. J Biol Chem 280, 15180–15187.
    • (2005) J Biol Chem , vol.280 , pp. 15180-15187
    • Dickmanns, A1    Schmidt, B2    Rudolph, MG3    Mariappan, M4    Dierks, T5    von Figura, K6    Ficner, R7
  • 28
    • 0024022478 scopus 로고
    • Sorting of soluble ER proteins in yeast
    • 28 Pelham HR, Hardwick KG & Lewis MJ (1988) Sorting of soluble ER proteins in yeast. EMBO J 7, 1757–1762.
    • (1988) EMBO J , vol.7 , pp. 1757-1762
    • Pelham, HR1    Hardwick, KG2    Lewis, MJ3
  • 29
    • 0031953138 scopus 로고    scopus 로고
    • Identification of amino acids in the binding pocket of the human KDEL receptor
    • 29 Scheel AA & Pelham HR (1998) Identification of amino acids in the binding pocket of the human KDEL receptor. J Biol Chem 273, 2467–2472.
    • (1998) J Biol Chem , vol.273 , pp. 2467-2472
    • Scheel, AA1    Pelham, HR2
  • 30
    • 0026489626 scopus 로고
    • Sequence of a second human KDEL receptor
    • 30 Lewis MJ & Pelham HR (1992) Sequence of a second human KDEL receptor. J Mol Biol 226, 913–916.
    • (1992) J Mol Biol , vol.226 , pp. 913-916
    • Lewis, MJ1    Pelham, HR2
  • 31
    • 0023654667 scopus 로고
    • A single polypeptide acts both as the beta subunit of prolyl 4‐hydroxylase and as a protein disulfide‐isomerase
    • 31 Koivu J, Myllyla R, Helaakoski T, Pihlajaniemi T, Tasanen K & Kivirikko KI (1987) A single polypeptide acts both as the beta subunit of prolyl 4‐hydroxylase and as a protein disulfide‐isomerase. J Biol Chem 262, 6447–6449.
    • (1987) J Biol Chem , vol.262 , pp. 6447-6449
    • Koivu, J1    Myllyla, R2    Helaakoski, T3    Pihlajaniemi, T4    Tasanen, K5    Kivirikko, KI6
  • 32
    • 0023303619 scopus 로고
    • Molecular cloning of the beta‐subunit of human prolyl 4‐hydroxylase. This subunit and protein disulphide isomerase are products of the same gene
    • 32 Pihlajaniemi T, Helaakoski T, Tasanen K, Myllyla R, Huhtala ML, Koivu J & Kivirikko KI (1987) Molecular cloning of the beta‐subunit of human prolyl 4‐hydroxylase. This subunit and protein disulphide isomerase are products of the same gene. EMBO J 6, 643–649.
    • (1987) EMBO J , vol.6 , pp. 643-649
    • Pihlajaniemi, T1    Helaakoski, T2    Tasanen, K3    Myllyla, R4    Huhtala, ML5    Koivu, J6    Kivirikko, KI7
  • 33
    • 0026672695 scopus 로고
    • Site‐directed mutagenesis of human protein disulphide isomerase: effect on the assembly, activity and endoplasmic reticulum retention of human prolyl 4‐hydroxylase in Spodoptera frugiperda insect cells
    • 33 Vuori K, Pihlajaniemi T, Myllyla R & Kivirikko KI (1992) Site‐directed mutagenesis of human protein disulphide isomerase: effect on the assembly, activity and endoplasmic reticulum retention of human prolyl 4‐hydroxylase in Spodoptera frugiperda insect cells. EMBO J 11, 4213–4217.
    • (1992) EMBO J , vol.11 , pp. 4213-4217
    • Vuori, K1    Pihlajaniemi, T2    Myllyla, R3    Kivirikko, KI4
  • 34
    • 0028977992 scopus 로고
    • The beta‐glucuronidase propeptide contains a serpin‐related octamer necessary for complex formation with egasyn esterase and for retention within the endoplasmic reticulum
    • 34 Zhen L, Rusiniak ME & Swank RT (1995) The beta‐glucuronidase propeptide contains a serpin‐related octamer necessary for complex formation with egasyn esterase and for retention within the endoplasmic reticulum. J Biol Chem 270, 11912–11920.
    • (1995) J Biol Chem , vol.270 , pp. 11912-11920
    • Zhen, L1    Rusiniak, ME2    Swank, RT3
  • 36
    • 0023652396 scopus 로고
    • A C‐terminal signal prevents secretion of luminal ER proteins
    • 36 Munro S & Pelham HR (1987) A C ‐ terminal signal prevents secretion of luminal ER proteins. Cell 48, 899–907.
    • (1987) Cell , vol.48 , pp. 899-907
    • Munro, S1    Pelham, HR2
  • 37
    • 2342431029 scopus 로고    scopus 로고
    • The Hera database and its use in the characterization of endoplasmic reticulum proteins
    • 37 Scott M, Lu G, Hallett M & Thomas DY (2004) The Hera database and its use in the characterization of endoplasmic reticulum proteins. Bioinformatics 20, 937–944.
    • (2004) Bioinformatics , vol.20 , pp. 937-944
    • Scott, M1    Lu, G2    Hallett, M3    Thomas, DY4
  • 38
    • 3042606558 scopus 로고    scopus 로고
    • Annotating proteins from endoplasmic reticulum and Golgi apparatus in eukaryotic proteomes
    • 38 Wrzeszczynski KO & Rost B (2004) Annotating proteins from endoplasmic reticulum and Golgi apparatus in eukaryotic proteomes. Cell Mol Life Sci 61, 1341–1353.
    • (2004) Cell Mol Life Sci , vol.61 , pp. 1341-1353
    • Wrzeszczynski, KO1    Rost, B2
  • 39
    • 0030450784 scopus 로고    scopus 로고
    • The dynamic organisation of the secretory pathway
    • 39 Pelham HR (1996) The dynamic organisation of the secretory pathway. Cell Struct Funct 21, 413–419.
    • (1996) Cell Struct Funct , vol.21 , pp. 413-419
    • Pelham, HR1
  • 40
    • 0027513285 scopus 로고
    • pH‐dependent binding of KDEL to its receptor in vitro
    • 40 Wilson DW, Lewis MJ & Pelham HR (1993) pH‐dependent binding of KDEL to its receptor in vitro. J Biol Chem 268, 7465–7468.
    • (1993) J Biol Chem , vol.268 , pp. 7465-7468
    • Wilson, DW1    Lewis, MJ2    Pelham, HR3
  • 41
    • 0026517261 scopus 로고
    • Changing the specificity of the sorting receptor for luminal endoplasmic reticulum proteins
    • 41 Semenza JC & Pelham HR (1992) Changing the specificity of the sorting receptor for luminal endoplasmic reticulum proteins. J Mol Biol 224, 1–5.
    • (1992) J Mol Biol , vol.224 , pp. 1-5
    • Semenza, JC1    Pelham, HR2
  • 42
    • 34249067403 scopus 로고    scopus 로고
    • Sulfatase modifying factor 1 trafficking through the cells: from endoplasmic reticulum to the endoplasmic reticulum
    • 42 Zito E, Buono M, Pepe S, Settembre C, Annunziata I, Surace EM, Dierks T, Monti M, Cozzolino M, Pucci P et al. (2007) Sulfatase modifying factor 1 trafficking through the cells: from endoplasmic reticulum to the endoplasmic reticulum. EMBO J 26, 2443–2453.
    • (2007) EMBO J , vol.26 , pp. 2443-2453
    • Zito, E1    Buono, M2    Pepe, S3    Settembre, C4    Annunziata, I5    Surace, EM6    Dierks, T7    Monti, M8    Cozzolino, M9    Pucci, P10
  • 43
    • 0343487717 scopus 로고    scopus 로고
    • Characterization of brefeldin A induced vesicular structures containing cycling proteins of the intermediate compartment/cis‐Golgi network
    • 43 Füllekrug J, Sönnichsen B, Schäfer U, Nguyen Van P, Söling HD & Mieskes G (1997) Characterization of brefeldin A induced vesicular structures containing cycling proteins of the intermediate compartment/cis‐Golgi network. FEBS Lett 404, 75–81.
    • (1997) FEBS Lett , vol.404 , pp. 75-81
    • Füllekrug, J1    Sönnichsen, B2    Schäfer, U3    Nguyen Van, P4    Söling, HD5    Mieskes, G6
  • 44
    • 0034608802 scopus 로고    scopus 로고
    • Exploring the sequence space for tetracycline‐dependent transcriptional activators: novel mutations yield expanded range and sensitivity
    • 44 Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H & Hillen W (2000) Exploring the sequence space for tetracycline‐dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci USA 97, 7963–7968.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 7963-7968
    • Urlinger, S1    Baron, U2    Thellmann, M3    Hasan, MT4    Bujard, H5    Hillen, W6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.