메뉴 건너뛰기




Volumn 25, Issue 2, 2008, Pages 381-424

Global convergence toward traveling fronts in nonlinear parabolic systems with a gradient structure

Author keywords

Bistable traveling front; Energy functional; Global convergence; Gradient structure; Maximum principle; Nonlinear parabolic system

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; GRADIENT METHODS; MAXIMUM PRINCIPLE;

EID: 40049097937     PISSN: 02941449     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.anihpc.2006.12.005     Document Type: Article
Times cited : (40)

References (30)
  • 1
    • 85120116673 scopus 로고    scopus 로고
    • A. Ambrosetti, M.L. Bertotti, Homoclinics for second order conservative systems, in: M. Miranda (Ed.), PDE's and Related Subjects, Trento, Italy, 1990, in: Pitman Res. Notes Math. Ser., vol. 269, 1992, pp. 21–37
  • 2
    • 0036298883 scopus 로고    scopus 로고
    • Front propagation in periodic excitable media
    • H. Berestycki F. Hamel Front propagation in periodic excitable media Comm. Pure Appl. Math. 55 2002 949 1032
    • (2002) Comm. Pure Appl. Math. , vol.55 , pp. 949-1032
    • Berestycki, H.1    Hamel, F.2
  • 3
    • 0002626724 scopus 로고
    • Multi-dimensional traveling wave solutions of a flame propagation model
    • H. Berestycki B. Larrrouturou P.L. Lions Multi-dimensional traveling wave solutions of a flame propagation model Arch. Rat. Mech. Anal. 111 1990 33 49
    • (1990) Arch. Rat. Mech. Anal. , vol.111 , pp. 33-49
    • Berestycki, H.1    Larrrouturou, B.2    Lions, P.L.3
  • 4
    • 0001203924 scopus 로고    scopus 로고
    • Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations
    • X. Chen Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations Adv. Differential Equations 2 1997 125 160
    • (1997) Adv. Differential Equations , vol.2 , pp. 125-160
    • Chen, X.1
  • 5
    • 0013312171 scopus 로고    scopus 로고
    • Bounded, locally compact global attractors for semilinear damped wave equations on Rn
    • (1996) J. Diff. Int. Eq. , vol.9 , pp. 1147-1156
    • Feireisl, E.1
  • 6
    • 0002910353 scopus 로고
    • Long Time Behavior of Solutions of Bistable Nonlinear Diffusion Equations
    • P. Fife Long Time Behavior of Solutions of Bistable Nonlinear Diffusion Equations Arch. Rat. Mech. Anal. 70 1979 31 46
    • (1979) Arch. Rat. Mech. Anal. , vol.70 , pp. 31-46
    • Fife, P.1
  • 7
    • 0017637590 scopus 로고
    • The approach of solutions of nonlinear diffusion equations to traveling front solutions
    • P. Fife J.B. McLeod The approach of solutions of nonlinear diffusion equations to traveling front solutions Arch. Rat. Mech. Anal. 65 1977 335 361
    • (1977) Arch. Rat. Mech. Anal. , vol.65 , pp. 335-361
    • Fife, P.1    McLeod, J.B.2
  • 8
    • 0019661804 scopus 로고
    • A phase plane discussion of convergence to traveling fronts for nonlinear diffusion
    • P. Fife J.B. McLeod A phase plane discussion of convergence to traveling fronts for nonlinear diffusion Arch. Rat. Mech. Anal. 75 1981 281 314
    • (1981) Arch. Rat. Mech. Anal. , vol.75 , pp. 281-314
    • Fife, P.1    McLeod, J.B.2
  • 9
    • 40049083144 scopus 로고    scopus 로고
    • Convergence to traveling waves in damped hyperbolic equations
    • Th. Gallay Convergence to traveling waves in damped hyperbolic equations B. Fiedler K. Gröger J. Sprekels International Conference on Differential Equations, vol. 1 Berlin 1999 2000 World Scientific 787 793
    • (2000) , pp. 787-793
    • Gallay, Th.1
  • 10
    • 85120098420 scopus 로고    scopus 로고
    • Th. Gallay, R. Joly, Global stability of travelling fronts for a damped wave equation with bistable nonlinearity, Preprint
  • 11
    • 40049111399 scopus 로고    scopus 로고
    • A variational proof of global stability for bistable traveling waves
    • Th. Gallay E. Risler A variational proof of global stability for bistable traveling waves Diff. Int. Equ. 20 8 2007 901 926
    • (2007) Diff. Int. Equ. , vol.20 , Issue.8 , pp. 901-926
    • Gallay, Th.1    Risler, E.2
  • 12
    • 85120145213 scopus 로고    scopus 로고
    • Energy flow in extended gradient partial differential equations
    • Th. Gallay S. Slijepcevicć Energy flow in extended gradient partial differential equations J. Dyn. Diff. Equ. 13 2001 4
    • (2001) J. Dyn. Diff. Equ. , vol.13 , pp. 4
    • Gallay, Th.1    Slijepcevicć, S.2
  • 13
    • 0039768823 scopus 로고    scopus 로고
    • The Cauchy problem in local spaces for the complex Ginzburg–Landau equation, II. Contraction methods
    • J. Ginibre G. Velo The Cauchy problem in local spaces for the complex Ginzburg–Landau equation, II. Contraction methods Comm. Math. Phys. 187 1997 45 79
    • (1997) Comm. Math. Phys. , vol.187 , pp. 45-79
    • Ginibre, J.1    Velo, G.2
  • 14
    • 85120111539 scopus 로고    scopus 로고
    • A variational approach to traveling waves, Technical Report 85
    • S. Heinze A variational approach to traveling waves, Technical Report 85 2001 Max Planck Institute for Mathematical Sciences Leipzig
    • (2001)
    • Heinze, S.1
  • 15
    • 85120101940 scopus 로고    scopus 로고
    • D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, 1981
  • 16
    • 0000898687 scopus 로고    scopus 로고
    • Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity
    • M.A. Jendoubi Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity J. Diff. Equ. 144 1998 302 312
    • (1998) J. Diff. Equ. , vol.144 , pp. 302-312
    • Jendoubi, M.A.1
  • 17
    • 0016594542 scopus 로고
    • The Cauchy problem for quasi-linear symmetric hyperbolic systems
    • T. Kato The Cauchy problem for quasi-linear symmetric hyperbolic systems Arch. Rat. Mech. Anal. 58 1975 181 205
    • (1975) Arch. Rat. Mech. Anal. , vol.58 , pp. 181-205
    • Kato, T.1
  • 18
    • 0001748889 scopus 로고
    • The stable, center stable, center, center unstable and unstable manifolds
    • A. Kelley The stable, center stable, center, center unstable and unstable manifolds J. Diff. Equ. 3 1967 546 570
    • (1967) J. Diff. Equ. , vol.3 , pp. 546-570
    • Kelley, A.1
  • 19
    • 0002722044 scopus 로고
    • A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem
    • A.N. Kolmogorov I.G. Petrovskii N.S. Piskunov A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem Bjul. Moskovskovo Gos. Univ. 17 1937 1 72
    • (1937) Bjul. Moskovskovo Gos. Univ. , vol.17 , pp. 1-72
    • Kolmogorov, A.N.1    Petrovskii, I.G.2    Piskunov, N.S.3
  • 20
    • 0000857725 scopus 로고    scopus 로고
    • The complex Ginzburg–Landau equation on large and unbounded domains: sharper bounds and attractors
    • A. Mielke The complex Ginzburg–Landau equation on large and unbounded domains: sharper bounds and attractors Nonlinearity 10 1997 199 222
    • (1997) Nonlinearity , vol.10 , pp. 199-222
    • Mielke, A.1
  • 21
    • 0000454926 scopus 로고
    • Attractors for modulation equations on unbounded domains – existence and comparison
    • A. Mielke G. Schneider Attractors for modulation equations on unbounded domains – existence and comparison Nonlinearity 8 1995 743 768
    • (1995) Nonlinearity , vol.8 , pp. 743-768
    • Mielke, A.1    Schneider, G.2
  • 22
    • 4944241607 scopus 로고    scopus 로고
    • A global variational structure and propagation of disturbances in reaction–diffusion systems of gradient type
    • C.B. Muratov A global variational structure and propagation of disturbances in reaction–diffusion systems of gradient type Disc. Cont. Dyn. Syst. Ser. B 4 2004 867 892
    • (2004) Disc. Cont. Dyn. Syst. Ser. B , vol.4 , pp. 867-892
    • Muratov, C.B.1
  • 23
    • 0033481359 scopus 로고    scopus 로고
    • Monotonicity and convergence results in order preserving systems in the presence of symmetry
    • T. Ogiwara H. Matano Monotonicity and convergence results in order preserving systems in the presence of symmetry Disc. Cont. Dyn. Syst. 5 1999 1 34
    • (1999) Disc. Cont. Dyn. Syst. , vol.5 , pp. 1-34
    • Ogiwara, T.1    Matano, H.2
  • 24
    • 33747385413 scopus 로고    scopus 로고
    • Stability analysis in order-preserving systems in the presence of symmetry
    • T. Ogiwara H. Matano Stability analysis in order-preserving systems in the presence of symmetry Proc. Roy. Soc. Edinburgh Sect. A 129 2 1999 395 438
    • (1999) Proc. Roy. Soc. Edinburgh Sect. A , vol.129 , Issue.2 , pp. 395-438
    • Ogiwara, T.1    Matano, H.2
  • 25
    • 85120141331 scopus 로고    scopus 로고
    • E. Risler, A global relaxation result for bistable solutions of spatially extended gradient-like systems in one unbounded spatial dimension, in preparation
  • 26
    • 85120105498 scopus 로고    scopus 로고
    • E. Risler, Global behavior of bistable solutions of nonlinear parabolic systems with a gradient structure, in preparation
  • 27
    • 0000728498 scopus 로고    scopus 로고
    • Eventual monotonicity and convergence to traveling fronts for the solutions of parabolic equations in cylinders
    • J.-M. Roquejoffre Eventual monotonicity and convergence to traveling fronts for the solutions of parabolic equations in cylinders Ann. Inst. H. Poincare Anal. Non Lineaire 14 1997 499 552
    • (1997) Ann. Inst. H. Poincare Anal. Non Lineaire , vol.14 , pp. 499-552
    • Roquejoffre, J.-M.1
  • 28
    • 84972544038 scopus 로고
    • Multidimensional traveling fronts in a model from combustion theory and related problems
    • J.-M. Vega Multidimensional traveling fronts in a model from combustion theory and related problems Diff. Int. Eq. 6 1993 131 155
    • (1993) Diff. Int. Eq. , vol.6 , pp. 131-155
    • Vega, J.-M.1
  • 29
    • 0003913993 scopus 로고
    • Traveling Wave Solutions of Parabolic Systems
    • A.I. Volpert V.A. Volpert V.A. Volpert Traveling Wave Solutions of Parabolic Systems Translations of Mathematical Monographs vol. 140 1994 AMS Providence, RI
    • (1994)
    • Volpert, A.I.1    Volpert, V.A.2    Volpert, V.A.3
  • 30
    • 0000384621 scopus 로고
    • Existence and uniqueness of traveling waves in a reaction–diffusion equation with combustion nonlinearity
    • X. Xin Existence and uniqueness of traveling waves in a reaction–diffusion equation with combustion nonlinearity Indiana Univ. Math. J. 40 3 1991 985 1008
    • (1991) Indiana Univ. Math. J. , vol.40 , Issue.3 , pp. 985-1008
    • Xin, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.