-
1
-
-
0042386791
-
Short time asymptotics of certain infinite dimensional diffusion process
-
MR1915450
-
AIDA, S. and KAWABI, H. (2001). Short time asymptotics of certain infinite dimensional diffusion process. Stochastic Analysis and Related Topics 48 77-124. MR1915450
-
(2001)
Stochastic Analysis and Related Topics
, vol.48
, pp. 77-124
-
-
AIDA, S.1
KAWABI, H.2
-
2
-
-
23044530070
-
On the small time asymptotics of diffusion processes on path groups
-
MR1880348
-
AIDA, S. and ZHANG, T. (2002). On the small time asymptotics of diffusion processes on path groups. Potential Anal. 16 67-78. MR1880348
-
(2002)
Potential Anal
, vol.16
, pp. 67-78
-
-
AIDA, S.1
ZHANG, T.2
-
3
-
-
33645343306
-
Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below
-
MR2215664
-
ARNAUDON, M., THALMAIER, A. and WANG, F.-Y. (2005). Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below. Bull. Sci. Math. 130 223-233. MR2215664
-
(2005)
Bull. Sci. Math
, vol.130
, pp. 223-233
-
-
ARNAUDON, M.1
THALMAIER, A.2
WANG, F.-Y.3
-
4
-
-
51549101274
-
-
ARONSON, D. G. (1986). The porous medium equation. Nonlinear Diffusion Problems (Montecatini Terme, 1985). Lecture Notes in Math. 1224 1-46. Springer, Berlin. MR0877986
-
ARONSON, D. G. (1986). The porous medium equation. Nonlinear Diffusion Problems (Montecatini Terme, 1985). Lecture Notes in Math. 1224 1-46. Springer, Berlin. MR0877986
-
-
-
-
5
-
-
0030533361
-
Lévy-Gromov's isoperimetric inequality for an infinitedimensional diffusion generator
-
MR1374200
-
BAKRY, D. and LEDOUX, M. (1996). Lévy-Gromov's isoperimetric inequality for an infinitedimensional diffusion generator. Invent. Math. 123 259-281. MR1374200
-
(1996)
Invent. Math
, vol.123
, pp. 259-281
-
-
BAKRY, D.1
LEDOUX, M.2
-
6
-
-
31744446404
-
Strong solutions to stochastic generalized porous media equations: Existence, uniqueness and ergodicity
-
MR2209754
-
DA PRATO, G., RÖCKNER, M., ROZOVSKII, B. L. and WANG, F.-Y. (2004). Strong solutions to stochastic generalized porous media equations: Existence, uniqueness and ergodicity. Comm. Partial Differential Equations 31 277-291. MR2209754
-
(2004)
Comm. Partial Differential Equations
, vol.31
, pp. 277-291
-
-
DA PRATO, G.1
RÖCKNER, M.2
ROZOVSKII, B.L.3
WANG, F.-Y.4
-
7
-
-
0035638785
-
Hypercontractivity of Hamilton-Jacobi equations
-
MR1846020
-
BOBKOV, S. G., GENTIL, I. and LEDOUX, M. (2001). Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pures Appl. 80 669-696. MR1846020
-
(2001)
J. Math. Pures Appl
, vol.80
, pp. 669-696
-
-
BOBKOV, S.G.1
GENTIL, I.2
LEDOUX, M.3
-
8
-
-
0035592025
-
Heat kernel estimates with application to compactness of manifolds
-
MR1838361
-
GONG, F.-Z. and WANG, F.-Y. (2001). Heat kernel estimates with application to compactness of manifolds. Quart. J. Math. 52 171-180. MR1838361
-
(2001)
Quart. J. Math
, vol.52
, pp. 171-180
-
-
GONG, F.-Z.1
WANG, F.-Y.2
-
9
-
-
0036109823
-
Functional inequalities for uniformly integrable semigroups and application to essential spectrums
-
MR1880915
-
GONG, F.-Z. and. WANG, F.-Y. (2002). Functional inequalities for uniformly integrable semigroups and application to essential spectrums. Forum Math. 14 293-313. MR1880915
-
(2002)
Forum Math
, vol.14
, pp. 293-313
-
-
GONG, F.-Z.1
WANG, F.-Y.2
-
10
-
-
0001569543
-
Transition density estimates for diffusion processes on post critically finite self-similar fractals
-
MR1665249
-
HAMBLY, B. M. and KUMAGAI, T. (1999). Transition density estimates for diffusion processes on post critically finite self-similar fractals. Proc. London Math. Soc. (3) 78 431-458. MR1665249
-
(1999)
Proc. London Math. Soc. (3)
, vol.78
, pp. 431-458
-
-
HAMBLY, B.M.1
KUMAGAI, T.2
-
11
-
-
15244361823
-
The parabolic Harnack inequality for the time dependent Ginzburg-Landau type SPDE and its application
-
MR2127731
-
KAWABI, H. (2005). The parabolic Harnack inequality for the time dependent Ginzburg-Landau type SPDE and its application. Potential Anal. 22 61-84. MR2127731
-
(2005)
Potential Anal
, vol.22
, pp. 61-84
-
-
KAWABI, H.1
-
12
-
-
28344441223
-
On the stochastic porous medium equation
-
MR2182084
-
KIM, J. U. (2006). On the stochastic porous medium equation. J. Differential Equations 220 163-194. MR2182084
-
(2006)
J. Differential Equations
, vol.220
, pp. 163-194
-
-
KIM, J.U.1
-
13
-
-
51549100272
-
-
KRYLOV, N. V. and ROZOVSKII, B. L. (1979). Stochastic evolution equations. Translated from Itogi Naukii Tekhniki, Seriya Sovremennye Problemy Matematiki 14 71-146. Plenum Publishing Corp. MR0570795
-
KRYLOV, N. V. and ROZOVSKII, B. L. (1979). Stochastic evolution equations. Translated from Itogi Naukii Tekhniki, Seriya Sovremennye Problemy Matematiki 14 71-146. Plenum Publishing Corp. MR0570795
-
-
-
-
14
-
-
51549112061
-
-
MA, Z. M. and RÖCKNER, M. (1992). Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer, New York. MR1214375
-
MA, Z. M. and RÖCKNER, M. (1992). Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer, New York. MR1214375
-
-
-
-
15
-
-
34248996999
-
Stochastic generalized porous media and fast diffusion equations
-
To appear
-
REN, J., RÖCKNER, M. and WANG, F.-Y. (2007). Stochastic generalized porous media and fast diffusion equations. J. Differential Equations. To appear.
-
(2007)
J. Differential Equations
-
-
REN, J.1
RÖCKNER, M.2
WANG, F.-Y.3
-
16
-
-
0242381983
-
Supercontractivity and ultracontractivity for (nonsymmetric) diffusion semigroups on manifolds
-
MR2010284
-
RÖCKNER, M. and WANG, F.-Y. (2003). Supercontractivity and ultracontractivity for (nonsymmetric) diffusion semigroups on manifolds. Forum Math. 15 893-921. MR2010284
-
(2003)
Forum Math
, vol.15
, pp. 893-921
-
-
RÖCKNER, M.1
WANG, F.-Y.2
-
17
-
-
0041760727
-
Harnack and functional inequalities for generalized Mehler semigroups
-
MR1996872
-
ROCKNER, M. and WANG, F.-Y. (2003). Harnack and functional inequalities for generalized Mehler semigroups. J. Funct. Anal. 203 237-261. MR1996872
-
(2003)
J. Funct. Anal
, vol.203
, pp. 237-261
-
-
ROCKNER, M.1
WANG, F.-Y.2
-
18
-
-
33750615728
-
Large deviations for stochastic generalized porous media equations
-
RÖCKNER, M., WANG, F.-Y. and WU, L. (2007). Large deviations for stochastic generalized porous media equations. Stoch. Proc. Appl. 116 1677-1689.
-
(2007)
Stoch. Proc. Appl
, vol.116
, pp. 1677-1689
-
-
RÖCKNER, M.1
WANG, F.-Y.2
WU, L.3
-
19
-
-
0031522629
-
Logarithmic Sobolev inequalities on noncompact Riemannian manifolds
-
MR1481127
-
WANG, F.-Y. (1997). Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Probab. Theory Related Fields 109 417-424. MR1481127
-
(1997)
Probab. Theory Related Fields
, vol.109
, pp. 417-424
-
-
WANG, F.-Y.1
-
20
-
-
0033448889
-
Harnack inequalities for log-Sobolev functions and estimates of log-Sobolev constants
-
MR1698947
-
WANG, F.-Y. (1999). Harnack inequalities for log-Sobolev functions and estimates of log-Sobolev constants. Ann. Probaab. 27 653-663. MR1698947
-
(1999)
Ann. Probaab
, vol.27
, pp. 653-663
-
-
WANG, F.-Y.1
-
21
-
-
0034419013
-
-
WANG, F.-Y. (2000). Functional inequalities, semigroup properties and spectrum estimates. Infin. Dimens. Anal. Quantum Probab. Relat. Topics 3 263-295. MR1812701
-
WANG, F.-Y. (2000). Functional inequalities, semigroup properties and spectrum estimates. Infin. Dimens. Anal. Quantum Probab. Relat. Topics 3 263-295. MR1812701
-
-
-
-
22
-
-
0041077520
-
Logarithmic Sobolev inequalities: Conditions and counterexamples
-
MR1862186
-
WANG, F.-Y. (2001). Logarithmic Sobolev inequalities: Conditions and counterexamples. J. Operator Theory 46 183-197. MR1862186
-
(2001)
J. Operator Theory
, vol.46
, pp. 183-197
-
-
WANG, F.-Y.1
-
23
-
-
0000038655
-
Uniformly integrable operators and large deviations for Markov processes
-
MR1753178
-
WU, L. (2000). Uniformly integrable operators and large deviations for Markov processes. J. Funct. Anal. 172 301-376. MR1753178
-
(2000)
J. Funct. Anal
, vol.172
, pp. 301-376
-
-
WU, L.1
|