메뉴 건너뛰기




Volumn 24, Issue 1, 2008, Pages 89-99

Classification of Phalaenopsis plantlet parts and identification of suitable grasping point for automatic transplanting using machine vision

Author keywords

Feature selection; Machine vision; Phalaenopsis plantlet

Indexed keywords

ALGORITHMS; FEATURE EXTRACTION; IMAGE PROCESSING; OPTIMIZATION;

EID: 39749203516     PISSN: 08838542     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (9)

References (19)
  • 1
    • 0037327261 scopus 로고    scopus 로고
    • A mobile robot for mechanical weed control
    • Astrand, B., and A. Baerveldt. 2003. A mobile robot for mechanical weed control. International Sugar Journal 105(1250): 89-95.
    • (2003) International Sugar Journal , vol.105 , Issue.1250 , pp. 89-95
    • Astrand, B.1    Baerveldt, A.2
  • 3
    • 39749095605 scopus 로고    scopus 로고
    • 1998. Development of the automation production of tissue culture plantlets for Phalaenopsis. Personal Communication, in Chinese
    • Chen, C. C. 1998. Development of the automation production of tissue culture plantlets for Phalaenopsis. Personal Communication. (in Chinese)
    • Chen, C.C.1
  • 4
    • 0026124532 scopus 로고
    • Shape description of completely visible and partially occluded leaves for identifying plants in digital images
    • Franz, E., M. R. Gebhardt, and K. B. Unklesbay. 1991a. Shape description of completely visible and partially occluded leaves for identifying plants in digital images. Trans actions of the ASAE 34(2): 673-681.
    • (1991) Trans actions of the ASAE , vol.34 , Issue.2 , pp. 673-681
    • Franz, E.1    Gebhardt, M.R.2    Unklesbay, K.B.3
  • 5
    • 0026124264 scopus 로고
    • The use of local spectral properties of leaves as an aid for identifying weed seedlings in digital images
    • Franz, E., M. R. Gebhardt, and K. B. Unklesbay. 1991b. The use of local spectral properties of leaves as an aid for identifying weed seedlings in digital images. Trans actions of the ASAE 34(2): 682-687.
    • (1991) Trans actions of the ASAE , vol.34 , Issue.2 , pp. 682-687
    • Franz, E.1    Gebhardt, M.R.2    Unklesbay, K.B.3
  • 6
    • 0029163782 scopus 로고
    • Algorithms for extracting leaf boundary information from digital images of plant foliage
    • Franz, E., M. R. Gebhardt, and K. B. Unklesbay. 1995. Algorithms for extracting leaf boundary information from digital images of plant foliage. Trans actions of the ASAE 38(2): 625-633.
    • (1995) Trans actions of the ASAE , vol.38 , Issue.2 , pp. 625-633
    • Franz, E.1    Gebhardt, M.R.2    Unklesbay, K.B.3
  • 8
    • 0001323069 scopus 로고
    • Application of machine vision to shape analysis in leaf and plant identification
    • Guyer, D. E., G. E. Miles, L. D. Gaulttney, and M. M. Schreiber. 1993. Application of machine vision to shape analysis in leaf and plant identification. Transactions of the ASAE 36(1): 163-171.
    • (1993) Transactions of the ASAE , vol.36 , Issue.1 , pp. 163-171
    • Guyer, D.E.1    Miles, G.E.2    Gaulttney, L.D.3    Schreiber, M.M.4
  • 9
    • 0027331825 scopus 로고
    • Identification of plant parts using color and geometric image data
    • Humphries, S., and W. Simonton. 1993. Identification of plant parts using color and geometric image data. Transactions of the ASAE 36(5): 1493-1500
    • (1993) Transactions of the ASAE , vol.36 , Issue.5 , pp. 1493-1500
    • Humphries, S.1    Simonton, W.2
  • 10
    • 0003956532 scopus 로고
    • Characteristics of morphology and anatomy in root and leaf of Phalaenopsis amabilis
    • Lee, C. H. and N. Lee. 1991. Characteristics of morphology and anatomy in root and leaf of Phalaenopsis amabilis. J. Chinese Soc. Hort. Sci. 37(4): 237-248.
    • (1991) J. Chinese Soc. Hort. Sci , vol.37 , Issue.4 , pp. 237-248
    • Lee, C.H.1    Lee, N.2
  • 13
    • 1142290141 scopus 로고    scopus 로고
    • Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images
    • Meyer, G. E., J. C. Neto, and D. D. Jones. 2004. Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images. Computers and Electronics in Agriculture 42(3): 161-180.
    • (2004) Computers and Electronics in Agriculture , vol.42 , Issue.3 , pp. 161-180
    • Meyer, G.E.1    Neto, J.C.2    Jones, D.D.3
  • 15
    • 0025511038 scopus 로고
    • Plant identification using color co-occurrence matrices
    • Shearer, S. A., and R. G. Holmes. 1990. Plant identification using color co-occurrence matrices. Transactions o the ASAE 33(6): 2037-2044.
    • (1990) Transactions o the ASAE , vol.33 , Issue.6 , pp. 2037-2044
    • Shearer, S.A.1    Holmes, R.G.2
  • 16
    • 0029701053 scopus 로고    scopus 로고
    • Bayesian and fuzzy logic classification for plant structure analysis
    • Simonton, W., and D. Graham. 1996. Bayesian and fuzzy logic classification for plant structure analysis. Applied Engineering in Agriculture 12(1): 89-97.
    • (1996) Applied Engineering in Agriculture , vol.12 , Issue.1 , pp. 89-97
    • Simonton, W.1    Graham, D.2
  • 19
    • 0029294032 scopus 로고
    • Effective criteria for weed identification in wheat fields using machine vision
    • Zhang, N., and C. Chaisattapagon. 1995. Effective criteria for weed identification in wheat fields using machine vision. Transactions of the ASAE 38(3): 965-974.
    • (1995) Transactions of the ASAE , vol.38 , Issue.3 , pp. 965-974
    • Zhang, N.1    Chaisattapagon, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.