-
1
-
-
33846613129
-
2-orbifold model of the symplectic fermionic vertex operator superalgebra
-
2-orbifold model of the symplectic fermionic vertex operator superalgebra. Math. Z. 255 (2007) 755-792
-
(2007)
Math. Z.
, vol.255
, pp. 755-792
-
-
Abe, T.1
-
3
-
-
0035649713
-
1 + ∞ with a negative integer central charge
-
1 + ∞ with a negative integer central charge. Comm. Algebra 29 7 (2001) 3153-3166
-
(2001)
Comm. Algebra
, vol.29
, Issue.7
, pp. 3153-3166
-
-
Adamović, D.1
-
4
-
-
0345448104
-
Classification of irreducible modules of certain subalgebras of free boson vertex algebra
-
Adamović D. Classification of irreducible modules of certain subalgebras of free boson vertex algebra. J. Algebra 270 (2003) 115-132
-
(2003)
J. Algebra
, vol.270
, pp. 115-132
-
-
Adamović, D.1
-
5
-
-
34547611625
-
Logarithmic intertwining operators and W (2, 2 p - 1)-algebras
-
Adamović D., and Milas A. Logarithmic intertwining operators and W (2, 2 p - 1)-algebras. J. Math. Phys. 48 (2007) 073503
-
(2007)
J. Math. Phys.
, vol.48
, pp. 073503
-
-
Adamović, D.1
Milas, A.2
-
6
-
-
39749202509
-
-
D. Adamović, A. Milas, in preparation
-
D. Adamović, A. Milas, in preparation
-
-
-
-
7
-
-
34347232012
-
Representation theory of W-algebras
-
arXiv:math/0506056
-
Arakawa T. Representation theory of W-algebras. Invent. Math. 169 (2007) 219-320. arXiv:math/0506056
-
(2007)
Invent. Math.
, vol.169
, pp. 219-320
-
-
Arakawa, T.1
-
8
-
-
30644470278
-
2-cofiniteness for a family of W-algebras
-
2-cofiniteness for a family of W-algebras. J. Phys. A 39 (2006) 951-966
-
(2006)
J. Phys. A
, vol.39
, pp. 951-966
-
-
Carqueville, N.1
Flohr, M.2
-
9
-
-
33746898146
-
Finite vs. affine W-algebras
-
arXiv:math/0511055
-
De Sole A., and Kac V. Finite vs. affine W-algebras. Japanese J. Math. 1 (2006) 137-261. arXiv:math/0511055
-
(2006)
Japanese J. Math.
, vol.1
, pp. 137-261
-
-
De Sole, A.1
Kac, V.2
-
10
-
-
0000292099
-
Vertex algebras associated with even lattices
-
Dong C. Vertex algebras associated with even lattices. J. Algebra 160 (1993) 245-265
-
(1993)
J. Algebra
, vol.160
, pp. 245-265
-
-
Dong, C.1
-
12
-
-
0034288951
-
Modular-invariance of trace functions in orbifold theory and generalized Moonshine
-
Dong C., Li H., and Mason G. Modular-invariance of trace functions in orbifold theory and generalized Moonshine. Comm. Math. Phys. 214 (2000) 1-56
-
(2000)
Comm. Math. Phys.
, vol.214
, pp. 1-56
-
-
Dong, C.1
Li, H.2
Mason, G.3
-
13
-
-
0001441370
-
Representations of W-algebras with two generators and new rational models
-
Eholzer W., Flohr M., Honecker A., Hübel R., Nahm W., and Vernhagen R. Representations of W-algebras with two generators and new rational models. Nucl. Phys. B 383 (1992) 249-288
-
(1992)
Nucl. Phys. B
, vol.383
, pp. 249-288
-
-
Eholzer, W.1
Flohr, M.2
Honecker, A.3
Hübel, R.4
Nahm, W.5
Vernhagen, R.6
-
15
-
-
37049007596
-
The Kazhdan-Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic conformal field theories
-
(in Russian)
-
Feigin B.L., Gaǐnutdinov A.M., Semikhatov A.M., and Tipunin I.Yu. The Kazhdan-Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic conformal field theories. Teoret. Mat. Fiz. 148 3 (2006) 398-427 (in Russian)
-
(2006)
Teoret. Mat. Fiz.
, vol.148
, Issue.3
, pp. 398-427
-
-
Feigin, B.L.1
Gaǐnutdinov, A.M.2
Semikhatov, A.M.3
Tipunin, I.Yu.4
-
17
-
-
33646746046
-
Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center
-
Feigin B.L., Gaǐnutdinov A.M., Semikhatov A.M., and Tipunin I.Yu. Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center. Comm. Math. Phys. 265 (2006) 47-93
-
(2006)
Comm. Math. Phys.
, vol.265
, pp. 47-93
-
-
Feigin, B.L.1
Gaǐnutdinov, A.M.2
Semikhatov, A.M.3
Tipunin, I.Yu.4
-
18
-
-
0036606672
-
Logarithmic conformal field theories via logarithmic deformations
-
Fjelstad J., Fuchs J., Hwang S., Semikhatov A.M., and Tipunin I.Yu. Logarithmic conformal field theories via logarithmic deformations. Nuclear Phys. B 633 (2002) 379-413
-
(2002)
Nuclear Phys. B
, vol.633
, pp. 379-413
-
-
Fjelstad, J.1
Fuchs, J.2
Hwang, S.3
Semikhatov, A.M.4
Tipunin, I.Yu.5
-
19
-
-
1542636691
-
On modular invariant partition functions of conformal field theories with logarithmic operators
-
Flohr M. On modular invariant partition functions of conformal field theories with logarithmic operators. Internat. J. Modern Phys. A 11 (1996) 4147-4172
-
(1996)
Internat. J. Modern Phys. A
, vol.11
, pp. 4147-4172
-
-
Flohr, M.1
-
20
-
-
0242332349
-
Bits and pieces in logarithmic conformal field theory
-
Proceedings of the School and Workshop on Logarithmic Conformal Field Theory and Its Applications. Tehran, 2001
-
Flohr M. Bits and pieces in logarithmic conformal field theory. Proceedings of the School and Workshop on Logarithmic Conformal Field Theory and Its Applications. Tehran, 2001. Internat. J. Modern Phys. A 18 (2003) 4497-4591
-
(2003)
Internat. J. Modern Phys. A
, vol.18
, pp. 4497-4591
-
-
Flohr, M.1
-
21
-
-
32344434265
-
Logarithmic torus amplitudes
-
Flohr M., and Gaberdiel M. Logarithmic torus amplitudes. J. Phys. A 39 (2006) 1955-1967
-
(2006)
J. Phys. A
, vol.39
, pp. 1955-1967
-
-
Flohr, M.1
Gaberdiel, M.2
-
22
-
-
84874421172
-
Lectures on the Langlands program and conformal field theory
-
Springer, Berlin
-
Frenkel E. Lectures on the Langlands program and conformal field theory. Frontiers in Number Theory, Physics, and Geometry, II (2007), Springer, Berlin 387-533
-
(2007)
Frontiers in Number Theory, Physics, and Geometry, II
, pp. 387-533
-
-
Frenkel, E.1
-
23
-
-
0003348053
-
Vertex Algebras and Algebraic Curves
-
American Mathematical Society, Providence, RI
-
Frenkel E., and Ben-Zvi D. Vertex Algebras and Algebraic Curves. Math. Surveys Monogr. vol. 88 (2001), American Mathematical Society, Providence, RI
-
(2001)
Math. Surveys Monogr.
, vol.88
-
-
Frenkel, E.1
Ben-Zvi, D.2
-
25
-
-
2942748339
-
Nonsemisimple Fusion Algebras and the Verlinde Formula
-
Fuchs J., Hwang S., Semikhatov A.M., and Tipunin I.Yu. Nonsemisimple Fusion Algebras and the Verlinde Formula. Comm. Math. Phys. 247 3 (2004) 713-742
-
(2004)
Comm. Math. Phys.
, vol.247
, Issue.3
, pp. 713-742
-
-
Fuchs, J.1
Hwang, S.2
Semikhatov, A.M.3
Tipunin, I.Yu.4
-
26
-
-
0242300775
-
An algebraic approach to logarithmic conformal field theory
-
Proceedings of the School and Workshop on Logarithmic Conformal Field Theory and Its Applications. Tehran, 2001
-
Gaberdiel M. An algebraic approach to logarithmic conformal field theory. Proceedings of the School and Workshop on Logarithmic Conformal Field Theory and Its Applications. Tehran, 2001. Internat. J. Modern Phys. A 18 (2003) 4593-4638
-
(2003)
Internat. J. Modern Phys. A
, vol.18
, pp. 4593-4638
-
-
Gaberdiel, M.1
-
27
-
-
0042515527
-
A rational logarithmic conformal field theory
-
hep-th/9606050
-
Gaberdiel M., and Kausch H.G. A rational logarithmic conformal field theory. Phys. Lett. B 386 (1996) 131-137. hep-th/9606050
-
(1996)
Phys. Lett. B
, vol.386
, pp. 131-137
-
-
Gaberdiel, M.1
Kausch, H.G.2
-
28
-
-
0033579774
-
A local logarithmic conformal field theory
-
hep-th/9807091
-
Gaberdiel M., and Kausch H.G. A local logarithmic conformal field theory. Nucl. Phys. B 538 (1999) 631-658. hep-th/9807091
-
(1999)
Nucl. Phys. B
, vol.538
, pp. 631-658
-
-
Gaberdiel, M.1
Kausch, H.G.2
-
29
-
-
33947281549
-
The logarithmic triplet theory with boundary
-
hep-th/0608184
-
Gaberdiel M., and Runkel I. The logarithmic triplet theory with boundary. J. Phys. A 39 (2006) 14745-14780. hep-th/0608184
-
(2006)
J. Phys. A
, vol.39
, pp. 14745-14780
-
-
Gaberdiel, M.1
Runkel, I.2
-
30
-
-
17244380729
-
Vertex operator algebras, the Verlinde conjecture, and modular tensor categories
-
Huang Y.-Z. Vertex operator algebras, the Verlinde conjecture, and modular tensor categories. Proc. Natl. Acad. Sci. USA 102 (2005) 5352-5356
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 5352-5356
-
-
Huang, Y.-Z.1
-
31
-
-
33749176664
-
A logarithmic generalization of tensor product theory for modules for a vertex operator algebra
-
math.QA/0311235
-
Huang Y.-Z., Lepowsky J., and Zhang L. A logarithmic generalization of tensor product theory for modules for a vertex operator algebra. Internat. J. Math. 17 (2006) 975-1012. math.QA/0311235
-
(2006)
Internat. J. Math.
, vol.17
, pp. 975-1012
-
-
Huang, Y.-Z.1
Lepowsky, J.2
Zhang, L.3
-
33
-
-
0003354781
-
Vertex Algebras for Beginners
-
Amer. Math. Soc., Providence
-
Kac V. Vertex Algebras for Beginners. Univ. Lecture Ser. vol. 10 (1998), Amer. Math. Soc., Providence
-
(1998)
Univ. Lecture Ser.
, vol.10
-
-
Kac, V.1
-
34
-
-
0001400413
-
Extended conformal algebras generated by multiplet of primary fields
-
Kausch H.G. Extended conformal algebras generated by multiplet of primary fields. Phys. Lett. B 259 (1991) 448-455
-
(1991)
Phys. Lett. B
, vol.259
, pp. 448-455
-
-
Kausch, H.G.1
-
35
-
-
0000845270
-
Symplectic Fermions
-
Kausch H.G. Symplectic Fermions. Nuclear Phys. B 583 (2000) 513-541
-
(2000)
Nuclear Phys. B
, vol.583
, pp. 513-541
-
-
Kausch, H.G.1
-
36
-
-
0000621188
-
A study of W-algebras by using Jacobi identities
-
Kausch H.G., and Watts G.M.T. A study of W-algebras by using Jacobi identities. Nuclear Phys. B 354 (1991) 740-768
-
(1991)
Nuclear Phys. B
, vol.354
, pp. 740-768
-
-
Kausch, H.G.1
Watts, G.M.T.2
-
37
-
-
10144250036
-
Introduction to Vertex Operator Algebras and Their Representations
-
Birkhäuser, Boston
-
Lepowsky J., and Li H. Introduction to Vertex Operator Algebras and Their Representations. Progr. Math. vol. 227 (2003), Birkhäuser, Boston
-
(2003)
Progr. Math.
, vol.227
-
-
Lepowsky, J.1
Li, H.2
-
38
-
-
0037104710
-
Fusion rings for degenerate minimal models
-
Milas A. Fusion rings for degenerate minimal models. J. Algebra 254 2 (2002) 300-335
-
(2002)
J. Algebra
, vol.254
, Issue.2
, pp. 300-335
-
-
Milas, A.1
-
39
-
-
2142719180
-
Weak modules and logarithmic intertwining operators for vertex operator algebras
-
Recent Developments in Infinite-dimensional Lie Algebras and Conformal Field Theory. Charlottesville, VA, 2000, Amer. Math. Soc., Providence, RI
-
Milas A. Weak modules and logarithmic intertwining operators for vertex operator algebras. Recent Developments in Infinite-dimensional Lie Algebras and Conformal Field Theory. Charlottesville, VA, 2000. Contemp. Math. vol. 297 (2002), Amer. Math. Soc., Providence, RI 201-225
-
(2002)
Contemp. Math.
, vol.297
, pp. 201-225
-
-
Milas, A.1
-
40
-
-
36448946573
-
Logarithmic intertwining operators and vertex operators
-
Milas A. Logarithmic intertwining operators and vertex operators. Comm. Math. Phys. 277 (2008) 497-529
-
(2008)
Comm. Math. Phys.
, vol.277
, pp. 497-529
-
-
Milas, A.1
-
42
-
-
0030551014
-
Modular invariance of characters of vertex operator algebras
-
Zhu Y.-C. Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9 (1996) 237-302
-
(1996)
J. Amer. Math. Soc.
, vol.9
, pp. 237-302
-
-
Zhu, Y.-C.1
|