-
2
-
-
0035686918
-
(etc). "Special issue: Advances on communication systems using chaos
-
L. Kocarev, G.M. Maggio, M. Ogorzalek, Pecora, L. and Yao, K. (etc). "Special issue: Advances on communication systems using chaos", IEEE Trans. Circuits and Systems I, Vol.48(12). 2001.
-
(2001)
IEEE Trans. Circuits and Systems I
, vol.48
, Issue.12
-
-
Kocarev, L.1
Maggio, G.M.2
Ogorzalek, M.3
Pecora, L.4
Yao, K.5
-
3
-
-
0000241853
-
Deterministic nonperiodic flows
-
E.N. Lorenz, "Deterministic nonperiodic flows", J. Atmos. Sci, Vol.20. pp130-141, 1963.
-
(1963)
J. Atmos. Sci
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
4
-
-
0034738985
-
The Lorenz attractor exists
-
I. Stewart, "The Lorenz attractor exists", Nature, Vol.406, pp948, 2000.
-
(2000)
Nature
, vol.406
, pp. 948
-
-
Stewart, I.1
-
5
-
-
62249200922
-
Yet another chaotic attractor
-
G. Chen and T. Ueta, "Yet another chaotic attractor", Int. J. Bifurcation and Chaos, Vol.9(7), pp1465-1466, 1999.
-
(1999)
Int. J. Bifurcation and Chaos
, vol.9
, Issue.7
, pp. 1465-1466
-
-
Chen, G.1
Ueta, T.2
-
6
-
-
0034238522
-
Bifurcation analysis of Chen's attractor
-
T. Ueta and G. Chen, "Bifurcation analysis of Chen's attractor", Int. J. Bifurcation and Chaos, Vol.10(8), pp1917-1931, 2000.
-
(2000)
Int. J. Bifurcation and Chaos
, vol.10
, Issue.8
, pp. 1917-1931
-
-
Ueta, T.1
Chen, G.2
-
8
-
-
0036696341
-
On a generalized Lorenz canonical form of chaotic systems
-
S. Čelikovskýand G. Chen, "On a generalized Lorenz canonical form of chaotic systems", Int. J. Bifurcation and Chaos, Vol.12(8), pp1789-1812, 2002.
-
(2002)
Int. J. Bifurcation and Chaos
, vol.12
, Issue.8
, pp. 1789-1812
-
-
Čelikovskýand, S.1
Chen, G.2
-
9
-
-
0036011505
-
A new chaotic attractor coined
-
J. Lü and G. Chen, " A new chaotic attractor coined", Int. J. Bifurcation and Chaos, Vol.12(3), pp659-661, 2002.
-
(2002)
Int. J. Bifurcation and Chaos
, vol.12
, Issue.3
, pp. 659-661
-
-
Lü, J.1
Chen, G.2
-
10
-
-
0036999538
-
Bridge the gap between the Lorenz system and the Chen system
-
J. Lü, G. Chen, S. Zhang and S. Čelikovský. "Bridge the gap between the Lorenz system and the Chen system", Int. J. Bifurcation and Chaos, Vol.12(12), pp2917-2926, 2002.
-
(2002)
Int. J. Bifurcation and Chaos
, vol.12
, Issue.12
, pp. 2917-2926
-
-
Lü, J.1
Chen, G.2
Zhang, S.3
Čelikovský, S.4
-
13
-
-
0027682168
-
Synchronization of Lorenz-Based chaotic circuits with applications to communications
-
K. M. Cuomo, A. V. Oppenheim and S.H. Strogatz, "Synchronization of Lorenz-Based chaotic circuits with applications to communications", IEEE Trans. Circuits and Systems, Vol.40(10), pp626-633, 1993.
-
(1993)
IEEE Trans. Circuits and Systems
, vol.40
, Issue.10
, pp. 626-633
-
-
Cuomo, K.M.1
Oppenheim, A.V.2
Strogatz, S.H.3
-
14
-
-
0036600257
-
Circuitry implementation and synchronization of Chen's attractor
-
G.Q. Zhong and K.S. Tang, "Circuitry implementation and synchronization of Chen's attractor", Int. J. Bifurcation and Chaos, Vol. 12(6), pp1423-1427, 2002.
-
(2002)
Int. J. Bifurcation and Chaos
, vol.12
, Issue.6
, pp. 1423-1427
-
-
Zhong, G.Q.1
Tang, K.S.2
-
15
-
-
0942266823
-
Experimental confirmation of a new chaotic attractor
-
F. Han, Y. Wang, X. Yu and Y. Feng, "Experimental confirmation of a new chaotic attractor Chaos", Solitons and Fractals, Vol.21, pp69-74, 2004.
-
(2004)
Chaos, Solitons and Fractals
, vol.21
, pp. 69-74
-
-
Han, F.1
Wang, Y.2
Yu, X.3
Feng, Y.4
|