메뉴 건너뛰기




Volumn 9, Issue 2, 2008, Pages 223-233

k-ANMI: A mutual information based clustering algorithm for categorical data

Author keywords

Categorical data; Cluster ensemble; Clustering; Data mining; Mutual information

Indexed keywords

CLUSTERING ALGORITHMS; DATA MINING; DATA STRUCTURES;

EID: 39749088816     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2006.05.006     Document Type: Article
Times cited : (65)

References (37)
  • 1
    • 39749145624 scopus 로고    scopus 로고
    • E.H. Han, G. Karypis, V. Kumar, B. Mobasher, Clustering based on association rule hypergraphs, in: Proc. of 1997 SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, 1997, pp. 9-13.
    • E.H. Han, G. Karypis, V. Kumar, B. Mobasher, Clustering based on association rule hypergraphs, in: Proc. of 1997 SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, 1997, pp. 9-13.
  • 2
    • 39749119697 scopus 로고    scopus 로고
    • D. Gibson, J. Kleiberg, P. Raghavan, Clustering categorical data: an approach based on dynamic systems, in: Proc. of VLDB'98, 1998, pp. 311-323.
    • D. Gibson, J. Kleiberg, P. Raghavan, Clustering categorical data: an approach based on dynamic systems, in: Proc. of VLDB'98, 1998, pp. 311-323.
  • 3
    • 0033885139 scopus 로고    scopus 로고
    • Y. Zhang, A.W. Fu, C.H. Cai, P.A. Heng, Clustering categorical data, in: Proc. of ICDE'00, 2000, pp. 305-305.
    • Y. Zhang, A.W. Fu, C.H. Cai, P.A. Heng, Clustering categorical data, in: Proc. of ICDE'00, 2000, pp. 305-305.
  • 4
    • 39749114790 scopus 로고    scopus 로고
    • Z. Huang, A fast clustering algorithm to cluster very large categorical data sets in data mining, in: Proc. of 1997 SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, 1997, pp. 1-8.
    • Z. Huang, A fast clustering algorithm to cluster very large categorical data sets in data mining, in: Proc. of 1997 SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, 1997, pp. 1-8.
  • 5
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Huang Z. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery 2 3 (1998) 283-304
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 6
    • 84945314569 scopus 로고    scopus 로고
    • F. Jollois, M. Nadif, Clustering large categorical data, in: Proc. of PAKDD'02, 2002, pp. 257-263.
    • F. Jollois, M. Nadif, Clustering large categorical data, in: Proc. of PAKDD'02, 2002, pp. 257-263.
  • 7
    • 0032595161 scopus 로고    scopus 로고
    • A fuzzy k-modes algorithm for clustering categorical data
    • Huang Z., and Ng M.K. A fuzzy k-modes algorithm for clustering categorical data. IEEE Transactions on Fuzzy Systems 7 4 (1999) 446-452
    • (1999) IEEE Transactions on Fuzzy Systems , vol.7 , Issue.4 , pp. 446-452
    • Huang, Z.1    Ng, M.K.2
  • 8
    • 0036887530 scopus 로고    scopus 로고
    • Clustering categorical data sets using tabu search techniques
    • Ng M.K., and Wong J.C. Clustering categorical data sets using tabu search techniques. Pattern Recognition 35 12 (2002) 2783-2790
    • (2002) Pattern Recognition , vol.35 , Issue.12 , pp. 2783-2790
    • Ng, M.K.1    Wong, J.C.2
  • 9
    • 0036567251 scopus 로고    scopus 로고
    • An iterative initial-points refinement algorithm for categorical data clustering
    • Sun Y., Zhu Q., and Chen Z. An iterative initial-points refinement algorithm for categorical data clustering. Pattern Recognition Letters 23 7 (2002) 875-884
    • (2002) Pattern Recognition Letters , vol.23 , Issue.7 , pp. 875-884
    • Sun, Y.1    Zhu, Q.2    Chen, Z.3
  • 10
    • 39749144940 scopus 로고    scopus 로고
    • V. Ganti, J. Gehrke, R. Ramakrishnan, CACTUS-clustering categorical data using summaries, in: Proc. of KDD'99, 1999, pp. 73-83.
    • V. Ganti, J. Gehrke, R. Ramakrishnan, CACTUS-clustering categorical data using summaries, in: Proc. of KDD'99, 1999, pp. 73-83.
  • 11
    • 0034228041 scopus 로고    scopus 로고
    • ROCK: a robust clustering algorithm for categorical attributes
    • Guha S., Rastogi R., and Shim K. ROCK: a robust clustering algorithm for categorical attributes. Information Systems 25 5 (2000) 345-366
    • (2000) Information Systems , vol.25 , Issue.5 , pp. 345-366
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 12
    • 0033279070 scopus 로고    scopus 로고
    • K. Wang, C. Xu, B. Liu, Clustering transactions using large items, in: Proc. of CIKM'99, 1999, pp. 483-490.
    • K. Wang, C. Xu, B. Liu, Clustering transactions using large items, in: Proc. of CIKM'99, 1999, pp. 483-490.
  • 13
    • 0035169515 scopus 로고    scopus 로고
    • C.H. Yun, K.T. Chuang, M.S. Chen, An efficient clustering algorithm for market basket data based on small large ratios, in: Proc. of COMPSAC'01, 2001, pp. 505-510.
    • C.H. Yun, K.T. Chuang, M.S. Chen, An efficient clustering algorithm for market basket data based on small large ratios, in: Proc. of COMPSAC'01, 2001, pp. 505-510.
  • 14
    • 13444303743 scopus 로고    scopus 로고
    • C.H. Yun, K.T. Chuang, M.S. Chen, Using category based adherence to cluster market-basket data, in: Proc. of ICDM'02, 2002, pp. 546-553.
    • C.H. Yun, K.T. Chuang, M.S. Chen, Using category based adherence to cluster market-basket data, in: Proc. of ICDM'02, 2002, pp. 546-553.
  • 15
    • 13444268851 scopus 로고    scopus 로고
    • J. Xu, S.Y. Sung, Caucus-based transaction clustering, in: Proc of DASFAA'03, 2003, pp. 81-88.
    • J. Xu, S.Y. Sung, Caucus-based transaction clustering, in: Proc of DASFAA'03, 2003, pp. 81-88.
  • 16
    • 0036740348 scopus 로고    scopus 로고
    • Squeezer: an efficient algorithm for clustering categorical data
    • He Z., Xu X., and Deng S. Squeezer: an efficient algorithm for clustering categorical data. Journal of Computer Science & Technology 17 5 (2002) 611-624
    • (2002) Journal of Computer Science & Technology , vol.17 , Issue.5 , pp. 611-624
    • He, Z.1    Xu, X.2    Deng, S.3
  • 17
    • 0038494682 scopus 로고    scopus 로고
    • D. Barbara, Y. Li, J. Couto, COOLCAT: an entropy-based algorithm for categorical clustering, in: Proc. of CIKM'02, 2002, pp. 582-589.
    • D. Barbara, Y. Li, J. Couto, COOLCAT: an entropy-based algorithm for categorical clustering, in: Proc. of CIKM'02, 2002, pp. 582-589.
  • 18
    • 0242540410 scopus 로고    scopus 로고
    • Y. Yang, S. Guan, J. You, CLOPE: a fast and effective clustering algorithm for transactional data, in: Proc. of KDD'02, 2002, pp. 682-687.
    • Y. Yang, S. Guan, J. You, CLOPE: a fast and effective clustering algorithm for transactional data, in: Proc. of KDD'02, 2002, pp. 682-687.
  • 19
    • 41549149553 scopus 로고    scopus 로고
    • F. Giannotti, G. Gozzi, G. Manco, Clustering transactional data, in: Proc. of PKDD'02, 2002, pp. 175-187.
    • F. Giannotti, G. Gozzi, G. Manco, Clustering transactional data, in: Proc. of PKDD'02, 2002, pp. 175-187.
  • 20
    • 13444283223 scopus 로고    scopus 로고
    • Finding median partitions using information-theoretical-based genetic algorithms
    • Cristofor D., and Simovici D. Finding median partitions using information-theoretical-based genetic algorithms. Journal of Universal Computer Science 8 2 (2002) 153-172
    • (2002) Journal of Universal Computer Science , vol.8 , Issue.2 , pp. 153-172
    • Cristofor, D.1    Simovici, D.2
  • 21
    • 13444273324 scopus 로고    scopus 로고
    • A cluster ensemble method for clustering categorical data
    • He Z., Xu X., and Deng S. A cluster ensemble method for clustering categorical data. Information Fusion 6 2 (2005) 143-151
    • (2005) Information Fusion , vol.6 , Issue.2 , pp. 143-151
    • He, Z.1    Xu, X.2    Deng, S.3
  • 22
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - a knowledge reuse framework for combining multiple partitions
    • Strehl A., and Ghosh J. Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3 (2002) 583-617
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 23
    • 0036931833 scopus 로고    scopus 로고
    • A. Strehl, J. Ghosh, Cluster ensembles - a knowledge reuse framework for combining partitionings, in: Proc. of the 8th National Conference on Artificial Intelligence and 4th Conference on Innovative Applications of Artificial Intelligence, 2002, pp. 93-99.
    • A. Strehl, J. Ghosh, Cluster ensembles - a knowledge reuse framework for combining partitionings, in: Proc. of the 8th National Conference on Artificial Intelligence and 4th Conference on Innovative Applications of Artificial Intelligence, 2002, pp. 93-99.
  • 24
    • 39749103987 scopus 로고    scopus 로고
    • A. Strehl, Relationship-based clustering and cluster ensembles for high-dimensional data mining, Ph.D. thesis, The University of Texas at Austin, May 2002.
    • A. Strehl, Relationship-based clustering and cluster ensembles for high-dimensional data mining, Ph.D. thesis, The University of Texas at Austin, May 2002.
  • 25
    • 39749149453 scopus 로고    scopus 로고
    • C. J. Merz, P. Merphy, UCI Repository of Machine Learning Databases, 1996. Available from: .
    • C. J. Merz, P. Merphy, UCI Repository of Machine Learning Databases, 1996. Available from: .
  • 26
    • 39749092929 scopus 로고    scopus 로고
    • M. Chen, K. Chuang, Clustering categorical data using the correlated-force ensemble, in: Proc. of SDM'04, 2004.
    • M. Chen, K. Chuang, Clustering categorical data using the correlated-force ensemble, in: Proc. of SDM'04, 2004.
  • 27
    • 35048857464 scopus 로고    scopus 로고
    • P. Andritsos, P. Tsaparas, R.J. Miller, K.C. Sevcik, LIMBO: scalable clustering of categorical data, in: Proc. of EDBT'04, 2004, pp. 123-146.
    • P. Andritsos, P. Tsaparas, R.J. Miller, K.C. Sevcik, LIMBO: scalable clustering of categorical data, in: Proc. of EDBT'04, 2004, pp. 123-146.
  • 28
    • 14344259208 scopus 로고    scopus 로고
    • T. Li, S. Ma, M. Ogihara, Entropy-based criterion in categorical clustering, in: Proc. of ICML'04, 2004.
    • T. Li, S. Ma, M. Ogihara, Entropy-based criterion in categorical clustering, in: Proc. of ICML'04, 2004.
  • 29
    • 27844489488 scopus 로고    scopus 로고
    • TCSOM: clustering transactions using self-organizing map
    • He Z., Xu X., and Deng S. TCSOM: clustering transactions using self-organizing map. Neural Processing Letters 22 3 (2005) 249-262
    • (2005) Neural Processing Letters , vol.22 , Issue.3 , pp. 249-262
    • He, Z.1    Xu, X.2    Deng, S.3
  • 30
    • 28444438828 scopus 로고    scopus 로고
    • A. Gionis, H. Mannila, P. Tsaparas, Clustering aggregation, in: Proc. of ICDE'05, 2005, pp. 341-352.
    • A. Gionis, H. Mannila, P. Tsaparas, Clustering aggregation, in: Proc. of ICDE'05, 2005, pp. 341-352.
  • 31
    • 14544267554 scopus 로고    scopus 로고
    • Categorical data visualization and clustering using subjective factors
    • Chang C., and Ding Z. Categorical data visualization and clustering using subjective factors. Data & Knowledge Engineering 53 3 (2005) 243-263
    • (2005) Data & Knowledge Engineering , vol.53 , Issue.3 , pp. 243-263
    • Chang, C.1    Ding, Z.2
  • 32
    • 0025902445 scopus 로고
    • Symbolic clustering using a new dissimilarity measure
    • Gowda K.C., and Diday E. Symbolic clustering using a new dissimilarity measure. Pattern Recognition 24 6 (1991) 567-578
    • (1991) Pattern Recognition , vol.24 , Issue.6 , pp. 567-578
    • Gowda, K.C.1    Diday, E.2
  • 33
    • 0029359322 scopus 로고
    • Divisive clustering of symbolic objects using the concepts of both similarity and dissimilarity
    • Gowda K.C., and Ravi T.V. Divisive clustering of symbolic objects using the concepts of both similarity and dissimilarity. Pattern Recognition 28 8 (1995) 1277-1282
    • (1995) Pattern Recognition , vol.28 , Issue.8 , pp. 1277-1282
    • Gowda, K.C.1    Ravi, T.V.2
  • 34
    • 0042341570 scopus 로고    scopus 로고
    • Clustering and its validation in a symbolic framework
    • Mali K., and Mitra S. Clustering and its validation in a symbolic framework. Pattern Recognition Letters 24 14 (2003) 2367-2376
    • (2003) Pattern Recognition Letters , vol.24 , Issue.14 , pp. 2367-2376
    • Mali, K.1    Mitra, S.2
  • 35
    • 4644323250 scopus 로고    scopus 로고
    • Multivalued type dissimilarity measure and concept of mutual dissimilarity value for clustering symbolic patterns
    • Guru D.S., and Kiranagi B.B. Multivalued type dissimilarity measure and concept of mutual dissimilarity value for clustering symbolic patterns. Pattern Recognition 38 1 (2005) 151-156
    • (2005) Pattern Recognition , vol.38 , Issue.1 , pp. 151-156
    • Guru, D.S.1    Kiranagi, B.B.2
  • 36
    • 2942618322 scopus 로고    scopus 로고
    • Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns
    • Guru D.S., Kiranagi B.B., and Nagabhushan P. Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns. Pattern Recognition Letters 25 10 (2004) 1203-1213
    • (2004) Pattern Recognition Letters , vol.25 , Issue.10 , pp. 1203-1213
    • Guru, D.S.1    Kiranagi, B.B.2    Nagabhushan, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.