-
1
-
-
39649110643
-
-
Boudart, M. in Ertl, G., Knözinger, H., Weitkamp, J. Handbook of Heterogeneous Catalysis; Wiley-VCH: Weinheim, 1997.
-
Boudart, M. in Ertl, G., Knözinger, H., Weitkamp, J. Handbook of Heterogeneous Catalysis; Wiley-VCH: Weinheim, 1997.
-
-
-
-
7
-
-
0035742065
-
-
Logadottir, A.; Rod, T. H.; Nørskov, J. K.; Hammer, B.; Dahl, S.; Jacobsen, C. J. H. J. Catal. 2001, 197, 229.
-
(2001)
J. Catal
, vol.197
, pp. 229
-
-
Logadottir, A.1
Rod, T.H.2
Nørskov, J.K.3
Hammer, B.4
Dahl, S.5
Jacobsen, C.J.H.6
-
8
-
-
0038536735
-
-
Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Bahn, S.; Hansen, L. B.; Bollinger, M.; Bengaard, H.; Hammer, B.; Sljivancanin, Z.; Mavrikakis, M.; Xu, Y.; Dahl, S.; Jacobsen, C. J. H. J. Catal. 2002, 209, 275.
-
(2002)
J. Catal
, vol.209
, pp. 275
-
-
Nørskov, J.K.1
Bligaard, T.2
Logadottir, A.3
Bahn, S.4
Hansen, L.B.5
Bollinger, M.6
Bengaard, H.7
Hammer, B.8
Sljivancanin, Z.9
Mavrikakis, M.10
Xu, Y.11
Dahl, S.12
Jacobsen, C.J.H.13
-
9
-
-
1942436198
-
-
Bligaard, T.; Nørskov, J. K.; Dahl, S.; Matthiesen, J.; Christensen, C. H.; Sehested, J. J. Catal. 2004, 224, 206.
-
(2004)
J. Catal
, vol.224
, pp. 206
-
-
Bligaard, T.1
Nørskov, J.K.2
Dahl, S.3
Matthiesen, J.4
Christensen, C.H.5
Sehested, J.6
-
10
-
-
0034814842
-
-
(a) Jacobsen, C. J. H.; Dahl, S.; Clausen, B. S.; Bahn, S.; Logadottir, A.; Nørskov, J. K. J. Am. Chem. Soc. 2001, 123, 8404.
-
(2001)
J. Am. Chem. Soc
, vol.123
, pp. 8404
-
-
Jacobsen, C.J.H.1
Dahl, S.2
Clausen, B.S.3
Bahn, S.4
Logadottir, A.5
Nørskov, J.K.6
-
12
-
-
0242669322
-
-
(a) Michaelides, A.; Liu, Z. -P.; Zhang, C. J.; Alavi, A.; King, D. A.; Hu, P. J. Am. Chem. Soc. 2003, 125, 3704.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 3704
-
-
Michaelides, A.1
Liu, Z.-P.2
Zhang, C.J.3
Alavi, A.4
King, D.A.5
Hu, P.6
-
13
-
-
0346459935
-
-
(b) Gong, X.-Q.; Liu, Z.-P.; Raval, R.; Hu, P. J. Am. Chem. Soc. 2004, 126, 8.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 8
-
-
Gong, X.-Q.1
Liu, Z.-P.2
Raval, R.3
Hu, P.4
-
14
-
-
12844254253
-
-
(a) Honkala, K.; Hellman, A.; Remediakis, I. N.; Logadottir, A.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K. Science 2005, 307, 555.
-
(2005)
Science
, vol.307
, pp. 555
-
-
Honkala, K.1
Hellman, A.2
Remediakis, I.N.3
Logadottir, A.4
Carlsson, A.5
Dahl, S.6
Christensen, C.H.7
Nørskov, J.K.8
-
16
-
-
0026412546
-
-
Geerlings, J. J. C.; Zonnevylle, M. C.; de Groot, C. P. M. Surf. Sci. 1991, 241, 302.
-
(1991)
Surf. Sci
, vol.241
, pp. 302
-
-
Geerlings, J.J.C.1
Zonnevylle, M.C.2
de Groot, C.P.M.3
-
17
-
-
0037171091
-
-
Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. J. Phys.: Condens. Matter 2002, 14, 2745.
-
(2002)
J. Phys.: Condens. Matter
, vol.14
, pp. 2745
-
-
Soler, J.M.1
Artacho, E.2
Gale, J.D.3
Garcia, A.4
Junquera, J.5
Ordejón, P.6
Sánchez-Portal, D.7
-
19
-
-
4243943295
-
-
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
-
(1996)
Phys. Rev. Lett
, vol.77
, pp. 3865
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
20
-
-
1042277412
-
-
Liu, Z.-P.; Gong, X.-Q.; Kohanoff, J.; Sanchez, C.; Hu, P. Phys. Rev. Lett. 2003, 91, 266102.
-
(2003)
Phys. Rev. Lett
, vol.91
, pp. 266102
-
-
Liu, Z.-P.1
Gong, X.-Q.2
Kohanoff, J.3
Sanchez, C.4
Hu, P.5
-
21
-
-
0008293429
-
-
Alavi, A.; Hu, P.; Deutsch, T.; Silvestrelli, P. L.; Hutter, J. Phys. Rev. Lett. 1998, 80, 3650.
-
(1998)
Phys. Rev. Lett
, vol.80
, pp. 3650
-
-
Alavi, A.1
Hu, P.2
Deutsch, T.3
Silvestrelli, P.L.4
Hutter, J.5
-
22
-
-
39649086536
-
-
Eleven transition metals (Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au) were extensively computed to study the BEP relation. In calculating flat metal surfaces, closed-packed planes were used: (001) plane for hcp metals, (111) plane for fee metals. Monatomic step was employed to model surface defect. (211) and (210) planes were used for fee metals (e.g., Rh and Pt) and bcc metal (Fe), respectively. Because no low index plane appears monatomic step structure for hep metals (Ru and Co), surface defect was modeled by removing two neighboring rows of metal atoms in the top layer on close-packed (001) surfaces.
-
Eleven transition metals (Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au) were extensively computed to study the BEP relation. In calculating flat metal surfaces, closed-packed planes were used: (001) plane for hcp metals, (111) plane for fee metals. Monatomic step was employed to model surface defect. (211) and (210) planes were used for fee metals (e.g., Rh and Pt) and bcc metal (Fe), respectively. Because no low index plane appears monatomic step structure for hep metals (Ru and Co), surface defect was modeled by removing two neighboring rows of metal atoms in the top layer on close-packed (001) surfaces.
-
-
-
-
23
-
-
39649121737
-
-
There are slight differences that may come from different XC functionals. Nørskov's results were obtained from RPBE functional, and ours were calculated from PBE functional.
-
There are slight differences that may come from different XC functionals. Nørskov's results were obtained from RPBE functional, and ours were calculated from PBE functional.
-
-
-
-
24
-
-
39649102977
-
-
in press
-
Cheng, J.; Gong, X. -Q.; Hu, P.; Lok, C. M.; Ellis, P.; French, S. J. Catal., in press.
-
J. Catal
-
-
Cheng, J.1
Gong, X.-Q.2
Hu, P.3
Lok, C.M.4
Ellis, P.5
French, S.6
-
26
-
-
39649108680
-
-
It should be noted that there are some negative barriers because the molecule in the gas phase was selected as an IS. There are good reasons for choosing this reference state: (i) In a typical molecular dissociation reaction, there are two elementary steps; molecular adsorption and the dissociation of the adsorbed molecule. The molecular adsorption step and its reverse step (the molecular desorption) can usually reach quasi-equilibrium. Then the state of the molecule in the gas phase is kinetically equivalent to the state of the adsorbed molecule on the surface, ii) The advantage of taking the molecule in the gas phase as a reference state is that this state is the same for the molecule to dissociate on different metal surfaces. Thus, one can readily obtain trends of molecular dissociation on different surfaces
-
It should be noted that there are some negative barriers because the molecule in the gas phase was selected as an IS. There are good reasons for choosing this reference state: (i) In a typical molecular dissociation reaction, there are two elementary steps; molecular adsorption and the dissociation of the adsorbed molecule. The molecular adsorption step and its reverse step (the molecular desorption) can usually reach quasi-equilibrium. Then the state of the molecule in the gas phase is kinetically equivalent to the state of the adsorbed molecule on the surface, (ii) The advantage of taking the molecule in the gas phase as a reference state is that this state is the same for the molecule to dissociate on different metal surfaces. Thus, one can readily obtain trends of molecular dissociation on different surfaces.
-
-
-
|