메뉴 건너뛰기




Volumn 19, Issue 1, 2008, Pages 183-189

An assessment of qualitative performance of machine learning architectures: Modular feedback networks

Author keywords

Delay vector variance; Nonlinearity; Pipelined recurrent neural networks (PRNNs); Qualitative performance; Sensitivity

Indexed keywords

COMPUTER SIMULATION; RECURRENT NEURAL NETWORKS; SENSITIVITY ANALYSIS; VECTORS;

EID: 39549092149     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2007.902728     Document Type: Article
Times cited : (11)

References (14)
  • 1
    • 0030823340 scopus 로고    scopus 로고
    • Decrease of cardiac chaos in congestive heart failure
    • C. S. Poon and C. K. Merrill, "Decrease of cardiac chaos in congestive heart failure," Nature, vol. 389, pp. 492-495, 1997.
    • (1997) Nature , vol.389 , pp. 492-495
    • Poon, C.S.1    Merrill, C.K.2
  • 2
    • 0029252331 scopus 로고
    • Nonlinear adaptive prediction of nonstationary signals
    • Feb
    • S. Haykin and L. Li, "Nonlinear adaptive prediction of nonstationary signals," IEEE Trans. Signal Process., vol. 43, no. 2, pp. 526-535, Feb. 1995.
    • (1995) IEEE Trans. Signal Process , vol.43 , Issue.2 , pp. 526-535
    • Haykin, S.1    Li, L.2
  • 3
    • 0033751613 scopus 로고    scopus 로고
    • On the choice of parameters of the cost function in nested modular RNNs
    • Mar
    • D. P. Mandic and J. A. Chambers, "On the choice of parameters of the cost function in nested modular RNNs," IEEE Trans. Neural Netw., vol. 11, no. 2, pp. 315-322, Mar. 2000.
    • (2000) IEEE Trans. Neural Netw , vol.11 , Issue.2 , pp. 315-322
    • Mandic, D.P.1    Chambers, J.A.2
  • 4
    • 1142267539 scopus 로고    scopus 로고
    • The delay vector variance method for detecting determinism and nonlinearity in time series
    • T. Gautama, D. P. Mandic, and M. M. Van Hulle, "The delay vector variance method for detecting determinism and nonlinearity in time series," Physica D, vol. 190, no. 3-4, pp. 167-176, 2004.
    • (2004) Physica D , vol.190 , Issue.3-4 , pp. 167-176
    • Gautama, T.1    Mandic, D.P.2    Van Hulle, M.M.3
  • 7
    • 6144236430 scopus 로고    scopus 로고
    • Improved surrogate data for nonlinearity tests
    • T. Schreiber and A. Schmitz, "Improved surrogate data for nonlinearity tests," Phys. Rev. Lett., pp. 635-638, 1996.
    • (1996) Phys. Rev. Lett , pp. 635-638
    • Schreiber, T.1    Schmitz, A.2
  • 8
    • 0003043646 scopus 로고
    • Exploring the continuum between deterministic and stochastic modeling
    • A. S. Weigend and N. A. Gershenfeld, Eds. Reading, MA: Addison-Wesley
    • M. C. Casdagli and A. S. Weigend, "Exploring the continuum between deterministic and stochastic modeling," in Time Series Prediction: Forecasting the Future and Understanding the Past, A. S. Weigend and N. A. Gershenfeld, Eds. Reading, MA: Addison-Wesley, 1994, pp. 347-367.
    • (1994) Time Series Prediction: Forecasting the Future and Understanding the Past , pp. 347-367
    • Casdagli, M.C.1    Weigend, A.S.2
  • 9
    • 29444452036 scopus 로고
    • Exceptional events as evidence for determinism
    • D. Kaplan, "Exceptional events as evidence for determinism," Physica D, vol. 73, no. 1, pp. 38-48, 1994.
    • (1994) Physica D , vol.73 , Issue.1 , pp. 38-48
    • Kaplan, D.1
  • 10
    • 0001874436 scopus 로고    scopus 로고
    • Practical method for determining the minimum embedding dimension of a scalar time series
    • L. Cao, "Practical method for determining the minimum embedding dimension of a scalar time series," Physica D, vol. 110, pp. 43-50, 1997.
    • (1997) Physica D , vol.110 , pp. 43-50
    • Cao, L.1
  • 11
    • 34047183265 scopus 로고    scopus 로고
    • Multifeedback-layer neural network
    • Mar
    • A. Savran, "Multifeedback-layer neural network," IEEE Trans. Neural Netw., vol. 18, no. 2, pp. 373-384, Mar. 2007.
    • (2007) IEEE Trans. Neural Netw , vol.18 , Issue.2 , pp. 373-384
    • Savran, A.1
  • 12
    • 34047178025 scopus 로고    scopus 로고
    • A recurrent neural network for hierarchical control of interconnected dynamic systems
    • Mar
    • Z. Hou, M. Gupta, P. Nikiforuk, M. Tan, and L. Cheng, "A recurrent neural network for hierarchical control of interconnected dynamic systems," IEEE Trans. Neural Netw., vol. 18, no. 2, pp. 466-481, Mar. 2007.
    • (2007) IEEE Trans. Neural Netw , vol.18 , Issue.2 , pp. 466-481
    • Hou, Z.1    Gupta, M.2    Nikiforuk, P.3    Tan, M.4    Cheng, L.5
  • 14
    • 0342336543 scopus 로고    scopus 로고
    • Non-linear adaptive prediction of speech with a pipelined recurrent neural network and advanced learning algorithms
    • A. Prochazka, J. Uhlir, P. W. Rayner, and N.G. Kingsbury, Eds. Boston, MA: Birkhauser
    • D. P. Mandic, J. Baltersee, and J. A. Chambers, "Non-linear adaptive prediction of speech with a pipelined recurrent neural network and advanced learning algorithms," in Signal Analysis and Prediction, A. Prochazka, J. Uhlir, P. W. Rayner, and N.G. Kingsbury, Eds. Boston, MA: Birkhauser, 1998, vol. 5.
    • (1998) Signal Analysis and Prediction , vol.5
    • Mandic, D.P.1    Baltersee, J.2    Chambers, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.