메뉴 건너뛰기




Volumn 17, Issue 4, 2007, Pages 1202-1221

A large deviation inequality for vector functions on finite reversible Markov chains

Author keywords

Bernstein inequality; Hoeffding inequality; Large deviations; Markov chain; Spectral gap

Indexed keywords


EID: 39449109688     PISSN: 10505164     EISSN: 10505164     Source Type: Journal    
DOI: 10.1214/105051607000000078     Document Type: Article
Times cited : (8)

References (20)
  • 2
    • 0001917727 scopus 로고
    • Probability inequalities for the sum of independent random variables
    • BENNETT, G. (1962). Probability inequalities for the sum of independent random variables. J. Amer. Statist. Assoc. 57 33-45.
    • (1962) J. Amer. Statist. Assoc , vol.57 , pp. 33-45
    • BENNETT, G.1
  • 3
    • 52949100863 scopus 로고    scopus 로고
    • BERNSTEIN, S. (1952). Collected Papers. Izdat. Acad. Nauk SSSR, Moscow. (In Russian.) MR0048360
    • BERNSTEIN, S. (1952). Collected Papers. Izdat. Acad. Nauk SSSR, Moscow. (In Russian.) MR0048360
  • 4
    • 0000182415 scopus 로고
    • A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations
    • MR0057518
    • CHERNOFF, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statist. 23 493-507. MR0057518
    • (1952) Ann. Math. Statist , vol.23 , pp. 493-507
    • CHERNOFF, H.1
  • 5
    • 52949141092 scopus 로고    scopus 로고
    • DIACONIS, P. (1988). Group Representations in Probability and Statistics. IMS, Hayward, CA. MR0964069
    • DIACONIS, P. (1988). Group Representations in Probability and Statistics. IMS, Hayward, CA. MR0964069
  • 6
    • 0002207631 scopus 로고
    • A probability inequality for the occupation measure of a reversible Markov chain
    • MR1325039
    • DINWOODIE, I. H. (1995). A probability inequality for the occupation measure of a reversible Markov chain. Ann. Appl. Probab. 5 37-43. MR1325039
    • (1995) Ann. Appl. Probab , vol.5 , pp. 37-43
    • DINWOODIE, I.H.1
  • 7
    • 84980140517 scopus 로고
    • Asymptotic evaluation of certain Markov process expectations for large time. I, II
    • MR0386024
    • DONSKER, M. D. and VARADHAN, S. R. S. (1975). Asymptotic evaluation of certain Markov process expectations for large time. I, II. Comm. Pure Appl. Math. 28 1-47, 279-301. MR0386024
    • (1975) Comm. Pure Appl. Math , vol.28 , Issue.1-47 , pp. 279-301
    • DONSKER, M.D.1    VARADHAN, S.R.S.2
  • 10
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • MR0144363
    • HOEFFDING, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13-30. MR0144363
    • (1963) J. Amer. Statist. Assoc , vol.58 , pp. 13-30
    • HOEFFDING, W.1
  • 11
    • 0012972084 scopus 로고
    • Some dimension-free features of vector-valued martingales
    • MR1096481
    • KALLENBERG, O. and SZTENCEL, R. (1991). Some dimension-free features of vector-valued martingales. Probab. Theory Related Fields 88 215-247. MR1096481
    • (1991) Probab. Theory Related Fields , vol.88 , pp. 215-247
    • KALLENBERG, O.1    SZTENCEL, R.2
  • 12
    • 52949096760 scopus 로고    scopus 로고
    • KATO, T. (1980). Perturbation Theory for Linear Operators. Springer, Berlin. MR0407617
    • KATO, T. (1980). Perturbation Theory for Linear Operators. Springer, Berlin. MR0407617
  • 13
    • 0000627671 scopus 로고
    • Über das Gesetz des iterierten Logarithmus.
    • MR1512520
    • KOLMOGOROFF, A. (1929). Über das Gesetz des iterierten Logarithmus. Math. Ann. 101 126-135. MR1512520
    • (1929) Math. Ann , vol.101 , pp. 126-135
    • KOLMOGOROFF, A.1
  • 14
    • 0032222170 scopus 로고    scopus 로고
    • Chernoff-type bound for finite Markov chains
    • MR1627795
    • LEZAUD, P. (1998). Chernoff-type bound for finite Markov chains. Ann. Appl. Probab. 8 849-867. MR1627795
    • (1998) Ann. Appl. Probab , vol.8 , pp. 849-867
    • LEZAUD, P.1
  • 15
    • 0000413365 scopus 로고
    • A convexity property in the theory of random variables defined on a finite Markov chain
    • MR0126886
    • MILLER, H. D. (1961). A convexity property in the theory of random variables defined on a finite Markov chain. Ann. Math. Statist. 32 1260-1270. MR0126886
    • (1961) Ann. Math. Statist , vol.32 , pp. 1260-1270
    • MILLER, H.D.1
  • 16
    • 0001538561 scopus 로고
    • Some limit theorems for stationary Markov chains
    • MR0094846
    • NAGAEV, S. V. (1957). Some limit theorems for stationary Markov chains. Theory Probab. Appl. 2 378-406. MR0094846
    • (1957) Theory Probab. Appl , vol.2 , pp. 378-406
    • NAGAEV, S.V.1
  • 17
    • 0000820814 scopus 로고
    • An extremal problem in probability theory
    • MR0121857
    • PROKHOROV, Y. V. (1959). An extremal problem in probability theory. Theory Probab. Appl. 4 201-203. MR0121857
    • (1959) Theory Probab. Appl , vol.4 , pp. 201-203
    • PROKHOROV, Y.V.1
  • 18
    • 52949142641 scopus 로고    scopus 로고
    • PROKHOROV, Y. V. (1968). An extension of S. N. Bernstein's inequalities to multidimensional distributions. Theory Probab. Appl. 13 260-267. MR0230353
    • PROKHOROV, Y. V. (1968). An extension of S. N. Bernstein's inequalities to multidimensional distributions. Theory Probab. Appl. 13 260-267. MR0230353
  • 19
    • 52949144104 scopus 로고    scopus 로고
    • SALOFF-COSTE, L. (2004). Random walks on finite groups. In Probability on Discrete Structures. Encyclopaedia of Mathematical Sciences (H. Kesten, ed.) 100 263-346. Springer, Berlin. MR2023654
    • SALOFF-COSTE, L. (2004). Random walks on finite groups. In Probability on Discrete Structures. Encyclopaedia of Mathematical Sciences (H. Kesten, ed.) 100 263-346. Springer, Berlin. MR2023654
  • 20
    • 52949149588 scopus 로고    scopus 로고
    • YURINSKII, V. V. (1970). On an infinite-dimensional version of S. N. Bernstein's inequalities. Theory Probab. Appl. 15 108-109. MR0268941
    • YURINSKII, V. V. (1970). On an infinite-dimensional version of S. N. Bernstein's inequalities. Theory Probab. Appl. 15 108-109. MR0268941


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.