-
1
-
-
0001497505
-
Estimating linear restrictions on regression coefficients for multivariate normal distribution
-
Anderson T.W. Estimating linear restrictions on regression coefficients for multivariate normal distribution. Ann. Math. Statist. 22 (1951) 327-351
-
(1951)
Ann. Math. Statist.
, vol.22
, pp. 327-351
-
-
Anderson, T.W.1
-
2
-
-
0009127785
-
Cochran's theorem rank additivity and tripotent matrices
-
Kallianpur G., Krishnaiah P.R., and Ghosh J.K. (Eds), North Holland, Amsterdam
-
Anderson T.W., and Styan G.P.H. Cochran's theorem rank additivity and tripotent matrices. In: Kallianpur G., Krishnaiah P.R., and Ghosh J.K. (Eds). Statistics and Probability: Essays in Honor of C.R. Rao (1982), North Holland, Amsterdam 1-23
-
(1982)
Statistics and Probability: Essays in Honor of C.R. Rao
, pp. 1-23
-
-
Anderson, T.W.1
Styan, G.P.H.2
-
4
-
-
0141867588
-
Restricted ridge estimation
-
Groß J. Restricted ridge estimation. Statist. Probab. Lett. 65 (2003) 57-64
-
(2003)
Statist. Probab. Lett.
, vol.65
, pp. 57-64
-
-
Groß, J.1
-
5
-
-
0034353667
-
The use and properties of Tikhonov filter matrices
-
Gulliksson M., and Wedin P. The use and properties of Tikhonov filter matrices. SIAM J. Matrix Anal. Appl. 22 (2000) 276-281
-
(2000)
SIAM J. Matrix Anal. Appl.
, vol.22
, pp. 276-281
-
-
Gulliksson, M.1
Wedin, P.2
-
6
-
-
84942484786
-
Ridge regression: biased estimation for nonorthogonal problems
-
Hoerl A.F., and Kennard R.W. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12 (1970) 55-67
-
(1970)
Technometrics
, vol.12
, pp. 55-67
-
-
Hoerl, A.F.1
Kennard, R.W.2
-
7
-
-
39449134174
-
Optimal inverse of a matrix
-
Mitra S.K. Optimal inverse of a matrix. Sankhyā Ser. A 37 (1975) 550-563
-
(1975)
Sankhyā Ser. A
, vol.37
, pp. 550-563
-
-
Mitra, S.K.1
-
9
-
-
0005177829
-
General definition and decomposition of projectors and some applications to statistical problems
-
Rao C.R., and Yanai H. General definition and decomposition of projectors and some applications to statistical problems. J. Statist. Plann. Inference 3 (1979) 1-17
-
(1979)
J. Statist. Plann. Inference
, vol.3
, pp. 1-17
-
-
Rao, C.R.1
Yanai, H.2
-
10
-
-
0035167252
-
Constrained principal component analysis: a comprehensive theory
-
Takane Y., and Hunter M.A. Constrained principal component analysis: a comprehensive theory. Appl. Algebra Engrg. Comm. Comput. 12 (2001) 391-419
-
(2001)
Appl. Algebra Engrg. Comm. Comput.
, vol.12
, pp. 391-419
-
-
Takane, Y.1
Hunter, M.A.2
-
12
-
-
24644486521
-
An improved method for generalized constrained canonical correlation analysis
-
Takane Y., Yanai H., and Hwang H. An improved method for generalized constrained canonical correlation analysis. Comput. Statist. Data Anal. 50 (2006) 221-241
-
(2006)
Comput. Statist. Data Anal.
, vol.50
, pp. 221-241
-
-
Takane, Y.1
Yanai, H.2
Hwang, H.3
-
14
-
-
0001318292
-
Canonical ridge and econometrics of joint production
-
Vinod H.D. Canonical ridge and econometrics of joint production. J. Econom. 4 (1976) 147-166
-
(1976)
J. Econom.
, vol.4
, pp. 147-166
-
-
Vinod, H.D.1
-
15
-
-
38249016295
-
Some generalized forms of least squares g-inverse, minimum norm g-inverse, and Moore-Penrose inverse matrices
-
Yanai H. Some generalized forms of least squares g-inverse, minimum norm g-inverse, and Moore-Penrose inverse matrices. Comput. Statist. Data Anal. 10 (1990) 251-260
-
(1990)
Comput. Statist. Data Anal.
, vol.10
, pp. 251-260
-
-
Yanai, H.1
-
16
-
-
39449136713
-
Some extensions of inequalities concerning diagonal elements of orthogonal projectors and conditions for equalities
-
(in Japanese)
-
Yanai H., and Mayekawa S. Some extensions of inequalities concerning diagonal elements of orthogonal projectors and conditions for equalities. Japan. J. Appl. Statist. 17 (1988) 131-138 (in Japanese)
-
(1988)
Japan. J. Appl. Statist.
, vol.17
, pp. 131-138
-
-
Yanai, H.1
Mayekawa, S.2
|