메뉴 건너뛰기




Volumn 106, Issue A11, 2001, Pages 24541-24549

Auroral electrojet predictions with dynamic neural networks

Author keywords

[No Author keywords available]

Indexed keywords


EID: 39449102066     PISSN: None     EISSN: 21699402     Source Type: Journal    
DOI: 10.1029/2001ja900046     Document Type: Article
Times cited : (26)

References (28)
  • 1
    • 0001553760 scopus 로고
    • Signature in the interplanetay medium for substorms
    • Arnoldy, R.L., Signature in the interplanetay medium for substorms, J. Geophys. Res., 76, 5189, 1971.
    • (1971) J. Geophys. Res. , vol.76 , pp. 5189
    • Arnoldy, R.L.1
  • 2
    • 0001727916 scopus 로고
    • Magnetospheric impulse response for many levels of geomagnetic activity
    • Bargatze, L.F., D.N. Baker, R.L. McPherron, and E.W. Hones, Magnetospheric impulse response for many levels of geomagnetic activity, J. Geophys. Res., 90, 6387, 1985.
    • (1985) J. Geophys. Res. , vol.90 , pp. 6387
    • Bargatze, L.F.1    Baker, D.N.2    McPherron, R.L.3    Hones, E.W.4
  • 3
    • 0000948742 scopus 로고
    • A dynamical systems approach to modeling input-output systems
    • edited by M. Casdagli and S. Eubank, Addison-Wesley-Longman, Reading, Mass.
    • Casdagli, M., A dynamical systems approach to modeling input-output systems, in Nonlinear Modeling and Forecasting, edited by M. Casdagli and S. Eubank, pp. 265-281, Addison-Wesley-Longman, Reading, Mass., 1992.
    • (1992) Nonlinear Modeling and Forecasting , pp. 265-281
    • Casdagli, M.1
  • 6
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J.L., Finding structure in time, Cognitive Sci., 14, 179, 1990.
    • (1990) Cognitive Sci. , vol.14 , pp. 179
    • Elman, J.L.1
  • 7
    • 37149021663 scopus 로고    scopus 로고
    • Response of the auroral electrojets to the solar wind modeled with neural networks
    • Gleisner, H., and H. Lundstedt, Response of the auroral electrojets to the solar wind modeled with neural networks, J. Geophys. Res., 102, 14,269, 1997.
    • (1997) J. Geophys. Res. , vol.102
    • Gleisner, H.1    Lundstedt, H.2
  • 8
    • 0010039270 scopus 로고    scopus 로고
    • Predicting geomagnetic storms from solar-wind data using time-delay neural networks
    • Gleisner, H., H. Lundstedt, and P. Wintoft, Predicting geomagnetic storms from solar-wind data using time-delay neural networks, Ann. Geophys., 14, 679, 1996.
    • (1996) Ann. Geophys. , vol.14 , pp. 679
    • Gleisner, H.1    Lundstedt, H.2    Wintoft, P.3
  • 10
  • 11
    • 0039939886 scopus 로고
    • Applications of nonlinear time series models to driven systems
    • edited by M. Casdagli and S. Eubank, Addison-Wesley-Longman, Reading, Mass.
    • Hunter, N.F., Applications of nonlinear time series models to driven systems, in Nonlinear Modeling and Forecasting, edited by M. Casdagli and S. Eubank, pp. 467-491, Addison-Wesley-Longman, Reading, Mass., 1992.
    • (1992) Nonlinear Modeling and Forecasting , pp. 467-491
    • Hunter, N.F.1
  • 12
    • 85008043120 scopus 로고
    • Impulse response of geomagnetic indices to interplanetary magnetic fields
    • Iyemori, T., H. Maeda, and T. Kamei, Impulse response of geomagnetic indices to interplanetary magnetic fields, J. Geomagn. Geoelectr., 31, 1, 1979.
    • (1979) J. Geomagn. Geoelectr. , vol.31 , pp. 1
    • Iyemori, T.1    Maeda, H.2    Kamei, T.3
  • 13
    • 0003284920 scopus 로고
    • Serial order: A parallel, distributed processing approach
    • edited by J.L. Elman and D.E. Rumelhart, Erlbaum, Hillsdale, N.J.
    • Jordan, M.I., Serial order: A parallel, distributed processing approach, in Advances in Connectionist Theory: Speech, edited by J.L. Elman and D.E. Rumelhart, Erlbaum, Hillsdale, N.J., 1989.
    • (1989) Advances in Connectionist Theory: Speech
    • Jordan, M.I.1
  • 15
    • 0012290871 scopus 로고    scopus 로고
    • Dst index prediction using data-derived analogues of the magnetospheric dynamics
    • Klimas, A.J., D. Vassiliadis, and D.N. Baker, Dst index prediction using data-derived analogues of the magnetospheric dynamics, J. Geophys. Res., 103, 20,435, 1998.
    • (1998) J. Geophys. Res. , vol.103
    • Klimas, A.J.1    Vassiliadis, D.2    Baker, D.N.3
  • 16
    • 0003645482 scopus 로고
    • Nonlinear signal processing using neural networks: Prediction and system modelling
    • Los Alamos Nat. Lab., Los Alamos, N. M.
    • Lapedes, A., and R. Farber, Nonlinear signal processing using neural networks: prediction and system modelling, Tech. Rep. LA-UR-87-2662, Los Alamos Nat. Lab., Los Alamos, N. M., 1987.
    • (1987) Tech. Rep. LA-UR-87-2662
    • Lapedes, A.1    Farber, R.2
  • 17
    • 84984414494 scopus 로고
    • Prediction of geomagnetic storms from solar-wind data with the use of a neural network
    • Lundstedt, H., and P. Wintoft, Prediction of geomagnetic storms from solar-wind data with the use of a neural network, Ann. Geophys., 12, 19, 1994.
    • (1994) Ann. Geophys. , vol.12 , pp. 19
    • Lundstedt, H.1    Wintoft, P.2
  • 18
    • 0346707431 scopus 로고
    • Effects of solar wind parameters on the development of magnetospheric substorms
    • Murayama, T., and K. Hakamada, Effects of solar wind parameters on the development of magnetospheric substorms, Planet. Space Sci., 23, 75, 1975.
    • (1975) Planet. Space Sci. , vol.23 , pp. 75
    • Murayama, T.1    Hakamada, K.2
  • 19
    • 0001021235 scopus 로고
    • Nonlinear input/output analysis of the auroral electrojet index
    • Price, C.P., D. Prichard, and J.E. Bischoff, Nonlinear input/output analysis of the auroral electrojet index, J. Geophys. Res., 99, 13,227, 1994.
    • (1994) J. Geophys. Res. , vol.99
    • Price, C.P.1    Prichard, D.2    Bischoff, J.E.3
  • 20
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E., G. Hinton, and R. Williams, Learning representations by back-propagating errors, Nature, 323, 533, 1986.
    • (1986) Nature , vol.323 , pp. 533
    • Rumelhart, D.E.1    Hinton, G.2    Williams, R.3
  • 21
    • 0001176340 scopus 로고    scopus 로고
    • Neural network prediction of AE data
    • Takalo, J., and J. Timonen, Neural network prediction of AE data, Geophys. Res. Lett., 24, 2403, 1997.
    • (1997) Geophys. Res. Lett. , vol.24 , pp. 2403
    • Takalo, J.1    Timonen, J.2
  • 22
    • 0142035820 scopus 로고    scopus 로고
    • Modelling the spatial structure of the high latitude perturbations and the related current systems
    • Valdivia, J.A., D. Vassiliadis, A.J. Klimas, and A.S. Sharma, Modelling the spatial structure of the high latitude perturbations and the related current systems, Phys. Plasmas, 6, 4185, 1999.
    • (1999) Phys. Plasmas , vol.6 , pp. 4185
    • Valdivia, J.A.1    Vassiliadis, D.2    Klimas, A.J.3    Sharma, A.S.4
  • 23
    • 5244257340 scopus 로고
    • The input-state space approach to the prediction of auroral geomagnetic activity from solar wind variables
    • edited by J. Joselyn, H. Lundstedt, and J. Trolinger, NOAA-SEL, Boulder
    • Vassiliadis, D., The input-state space approach to the prediction of auroral geomagnetic activity from solar wind variables, in Proceedings of the International Workshop on Artificial Intelligence Applications in Solar-Terrestrial Physics, edited by J. Joselyn, H. Lundstedt, and J. Trolinger, pp. 145-151, NOAA-SEL, Boulder, 1993.
    • (1993) Proceedings of the International Workshop on Artificial Intelligence Applications in Solar-Terrestrial Physics , pp. 145-151
    • Vassiliadis, D.1
  • 24
    • 0000289939 scopus 로고
    • A description of the solar wind-magnetosphere coupling based on nonlinear filters
    • Vassiliadis, D., A.J. Klimas, D.N. Baker, and D.A. Roberts, A description of the solar wind-magnetosphere coupling based on nonlinear filters, J. Geophys. Res., 100, 3495, 1995.
    • (1995) J. Geophys. Res. , vol.100 , pp. 3495
    • Vassiliadis, D.1    Klimas, A.J.2    Baker, D.N.3    Roberts, D.A.4
  • 26
    • 0033562211 scopus 로고    scopus 로고
    • Forecasting auroral electrojet activity from solar wind input with neural networks
    • Weigel, R.S., W. Horton, T. Tajima, and T. Detman, Forecasting auroral electrojet activity from solar wind input with neural networks, Geophys. Res. Lett., 26, 1353, 1999.
    • (1999) Geophys. Res. Lett. , vol.26 , pp. 1353
    • Weigel, R.S.1    Horton, W.2    Tajima, T.3    Detman, T.4
  • 27
    • 0000502571 scopus 로고    scopus 로고
    • Prediction of geomagnetic storms from solar wind data using Elman recurrent neural networks
    • Wu, J.-G., and H. Lundstedt, Prediction of geomagnetic storms from solar wind data using Elman recurrent neural networks, Geophys. Res. Lett., 23, 319, 1996.
    • (1996) Geophys. Res. Lett. , vol.23 , pp. 319
    • Wu, J.-G.1    Lundstedt, H.2
  • 28
    • 37149050620 scopus 로고    scopus 로고
    • Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks
    • Wu, J.-G., and H. Lundstedt, Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks, J. Geophys. Res., 102, 14,255, 1997.
    • (1997) J. Geophys. Res. , vol.102
    • Wu, J.-G.1    Lundstedt, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.