메뉴 건너뛰기




Volumn 52, Issue 6, 2008, Pages 3047-3060

A GMM procedure for combining volatility forecasts

Author keywords

Forecast combination; GARCH; GMM; Volatility

Indexed keywords

COMPUTER SIMULATION; FORECASTING; PARAMETER ESTIMATION; TIME SERIES ANALYSIS;

EID: 39049154370     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2007.10.001     Document Type: Article
Times cited : (20)

References (30)
  • 1
    • 27744577669 scopus 로고    scopus 로고
    • Correcting the errors: a note on volatility forecast evaluation based on high frequency data and realized volatilities
    • Andersen A.T., Bollerslev F., and Meddahi N. Correcting the errors: a note on volatility forecast evaluation based on high frequency data and realized volatilities. Econometrica 73 (2005) 279-296
    • (2005) Econometrica , vol.73 , pp. 279-296
    • Andersen, A.T.1    Bollerslev, F.2    Meddahi, N.3
  • 3
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroskedasticity
    • Bollerslev T. Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31 (1986) 307-327
    • (1986) J. Econometrics , vol.31 , pp. 307-327
    • Bollerslev, T.1
  • 4
    • 33750970824 scopus 로고    scopus 로고
    • Financial econometric analysis at ultra-high frequency: data handling concerns
    • Brownlees C.T., and Gallo G.M. Financial econometric analysis at ultra-high frequency: data handling concerns. Comput. Statist. Data Anal. 51 (2006) 2232-2245
    • (2006) Comput. Statist. Data Anal. , vol.51 , pp. 2232-2245
    • Brownlees, C.T.1    Gallo, G.M.2
  • 5
    • 0036003734 scopus 로고    scopus 로고
    • Mixing and moment properties of various GARCH and stochastic volatility models
    • Carrasco M., and Chen X. Mixing and moment properties of various GARCH and stochastic volatility models. Econometric Theory 18 (2002) 17-39
    • (2002) Econometric Theory , vol.18 , pp. 17-39
    • Carrasco, M.1    Chen, X.2
  • 6
    • 33750990462 scopus 로고    scopus 로고
    • Comparison of nonnested asymmetric heteroskedastic models
    • Chen W.S., Gerlach R., and So M.K.P. Comparison of nonnested asymmetric heteroskedastic models. Comput. Statist. Data Anal. 51 (2006) 2164-2178
    • (2006) Comput. Statist. Data Anal. , vol.51 , pp. 2164-2178
    • Chen, W.S.1    Gerlach, R.2    So, M.K.P.3
  • 7
    • 0003047270 scopus 로고    scopus 로고
    • Tests of equal forecast accuracy and encompassing for nested models
    • Clark T.E., and McCracken M.W. Tests of equal forecast accuracy and encompassing for nested models. J. Econometrics 105 (2001) 85-110
    • (2001) J. Econometrics , vol.105 , pp. 85-110
    • Clark, T.E.1    McCracken, M.W.2
  • 8
    • 45249128876 scopus 로고
    • Combining forecast: a review and annotated bibliography
    • Clemen R.T. Combining forecast: a review and annotated bibliography. Internat. J. Forecasting 5 (1989) 559-581
    • (1989) Internat. J. Forecasting , vol.5 , pp. 559-581
    • Clemen, R.T.1
  • 9
    • 1842659927 scopus 로고    scopus 로고
    • Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives
    • Corradi V., and Swanson N.R. Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives. Internat. J. Forecasting 20 (2004) 185-199
    • (2004) Internat. J. Forecasting , vol.20 , pp. 185-199
    • Corradi, V.1    Swanson, N.R.2
  • 11
    • 0001250871 scopus 로고    scopus 로고
    • Modeling volatility persistence of speculative returns: a new approach
    • Ding Z., and Granger C.W.J. Modeling volatility persistence of speculative returns: a new approach. J. Econometrics 73 (1996) 185-215
    • (1996) J. Econometrics , vol.73 , pp. 185-215
    • Ding, Z.1    Granger, C.W.J.2
  • 12
    • 0003014915 scopus 로고    scopus 로고
    • A long-run and short-run component model of stock return volatility
    • Engle R., and White H. (Eds), Oxford University Press, Oxford
    • Engle R.F., and Lee G.G.J. A long-run and short-run component model of stock return volatility. In: Engle R., and White H. (Eds). Cointegration, Causality, and Forecasting (1999), Oxford University Press, Oxford
    • (1999) Cointegration, Causality, and Forecasting
    • Engle, R.F.1    Lee, G.G.J.2
  • 13
    • 33749368377 scopus 로고    scopus 로고
    • Mixing properties of a general class of GARCH(1,1) models without moment assumptions on the observed process
    • Francq C., and Zakoïan J.M. Mixing properties of a general class of GARCH(1,1) models without moment assumptions on the observed process. Econometric Theory 22 (2006) 815-834
    • (2006) Econometric Theory , vol.22 , pp. 815-834
    • Francq, C.1    Zakoïan, J.M.2
  • 14
    • 33750536645 scopus 로고    scopus 로고
    • Tests of conditional predictive ability
    • Giacomini R., and White H. Tests of conditional predictive ability. Econometrica 74 6 (2006) 1545-1578
    • (2006) Econometrica , vol.74 , Issue.6 , pp. 1545-1578
    • Giacomini, R.1    White, H.2
  • 15
    • 84984442855 scopus 로고
    • Improved methods of combining forecasts
    • Granger C.W.J., and Ramanathan R. Improved methods of combining forecasts. J. Forecasting 3 (1984) 197-204
    • (1984) J. Forecasting , vol.3 , pp. 197-204
    • Granger, C.W.J.1    Ramanathan, R.2
  • 16
    • 34248335052 scopus 로고    scopus 로고
    • Volatility components and long-memory effects revisited
    • article 3
    • Haas M. Volatility components and long-memory effects revisited. Stud. in Nonlinear Dynamics and Econometrics 11 (2007) article 3
    • (2007) Stud. in Nonlinear Dynamics and Econometrics , vol.11
    • Haas, M.1
  • 17
    • 0003020924 scopus 로고
    • GARCH(1,1) processes are near epoch dependent
    • Hansen B.E. GARCH(1,1) processes are near epoch dependent. Econom. Lett. 36 (1991) 181-186
    • (1991) Econom. Lett. , vol.36 , pp. 181-186
    • Hansen, B.E.1
  • 18
    • 33644524444 scopus 로고    scopus 로고
    • Consistent ranking of volatility models
    • Hansen P.R., and Lunde R. Consistent ranking of volatility models. J. Econometrics 131 (2004) 97-121
    • (2004) J. Econometrics , vol.131 , pp. 97-121
    • Hansen, P.R.1    Lunde, R.2
  • 20
    • 33644922331 scopus 로고    scopus 로고
    • A closed-form estimator for the GARCH(1,1) model
    • Kristensen D., and Linton O. A closed-form estimator for the GARCH(1,1) model. Econometric Theory 22 (2006) 323-327
    • (2006) Econometric Theory , vol.22 , pp. 323-327
    • Kristensen, D.1    Linton, O.2
  • 22
    • 70350096085 scopus 로고
    • Large sample estimation and hypothesis testing
    • Elsevier, Berlin
    • Newey W.K., and McFadden D. Large sample estimation and hypothesis testing. Handbook of Econometrics vol. 4 (1994), Elsevier, Berlin
    • (1994) Handbook of Econometrics , vol.4
    • Newey, W.K.1    McFadden, D.2
  • 23
    • 0000706085 scopus 로고
    • A simple positive semi-definite heteroskedasticity and autocorrelation consistent covariance matrix
    • Newey W.K., and West K.D. A simple positive semi-definite heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55 3 (1987) 703-708
    • (1987) Econometrica , vol.55 , Issue.3 , pp. 703-708
    • Newey, W.K.1    West, K.D.2
  • 24
    • 84963002108 scopus 로고
    • Automatic lag selection in covariance matrix estimation
    • Newey W.K., and West K.D. Automatic lag selection in covariance matrix estimation. Rev. of Econom. Stud. 61 4 (1994) 631-653
    • (1994) Rev. of Econom. Stud. , vol.61 , Issue.4 , pp. 631-653
    • Newey, W.K.1    West, K.D.2
  • 25
    • 39049158539 scopus 로고    scopus 로고
    • Patton, A., 2006. Volatility Forecast Evaluation and Comparison using Imperfect Volatility Proxies. Research Paper 175. Quantitative Finance Research Centre, University of Technology Sydney.
    • Patton, A., 2006. Volatility Forecast Evaluation and Comparison using Imperfect Volatility Proxies. Research Paper 175. Quantitative Finance Research Centre, University of Technology Sydney.
  • 26
    • 84986409844 scopus 로고
    • Threshold ARCH models and asymmetries in volatility
    • Rabemananjara R., and Zakoïan J.M. Threshold ARCH models and asymmetries in volatility. J. Appl. Econometrics 8 (1993) 31-49
    • (1993) J. Appl. Econometrics , vol.8 , pp. 31-49
    • Rabemananjara, R.1    Zakoïan, J.M.2
  • 27
    • 39049146875 scopus 로고    scopus 로고
    • Storti, G., 2005. A minimum distance approach to combining volatility forecasts from different models. In: Proceedings of the Conference SCO 2005, pp. 287-292.
    • Storti, G., 2005. A minimum distance approach to combining volatility forecasts from different models. In: Proceedings of the Conference SCO 2005, pp. 287-292.
  • 28
    • 33750712383 scopus 로고    scopus 로고
    • Minimum distance estimation of GARCH(1,1) models
    • Storti G. Minimum distance estimation of GARCH(1,1) models. Comput. Statist. Data Anal. 51 (2006) 1803-1821
    • (2006) Comput. Statist. Data Anal. , vol.51 , pp. 1803-1821
    • Storti, G.1
  • 29
    • 67649372714 scopus 로고    scopus 로고
    • Forecast combination
    • Elliott G., Granger C.W.J., and Timmermann A. (Eds), Elsevier, Amsterdam
    • Timmermann A. Forecast combination. In: Elliott G., Granger C.W.J., and Timmermann A. (Eds). Handbook of Economic Forecasting (2006), Elsevier, Amsterdam 135-196
    • (2006) Handbook of Economic Forecasting , pp. 135-196
    • Timmermann, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.