-
1
-
-
84944164395
-
-
I. BÁRÁNY, Random points, convex bodies, lattices, Proc. The International Congress of Mathematicians, Vol. III (Beijing, 2002), Higher Ed. Press, Beijing, 2002, pp. 527-535. MR 1957558 (2004a: 52003)
-
-
-
-
2
-
-
0037091874
-
-
p-Busemann- Petty centroid inequality, Adv. Math. 167 (2002), 128-141, http://dx.doi.org/10.1006/aima.2001.2036. MR 1901248 (2003e:52011)
-
-
-
-
3
-
-
33144478837
-
-
pMinkowski problem with not necessarily positive data, Adv. Math. 201 (2006), 77-89, http://dx.doi.org/10. 1016/j.aim.2004.11.007. MR 2204749 (2007b:34085)
-
-
-
-
4
-
-
33746888293
-
-
p-Minkowski problem and the Minkowski problem in centroaffinegeometry, Adv. Math. 205 (2006), 33-83, http://dx.doi.org/10.1016/.aim.2005.07.004. MR2254308(2007f:52019)
-
-
-
-
5
-
-
0002722964
-
-
Handbook of Convex Geometry, B, North-Holland, Amsterdam, MR 1242984 95b:52003
-
P. M. GRUBER, Aspects of approximation of convex bodies, Handbook of Convex Geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 319-345. MR 1242984 (95b:52003)
-
(1993)
Aspects of approximation of convex bodies
, vol.A
, pp. 319-345
-
-
GRUBER, P.M.1
-
6
-
-
4644370992
-
-
C. HU, X.-N. MA, and C. SHEN, On the Christoffel-Minkowski problem of Firey's p-sum, Calc. Var. Partial Differential Equations 21 (2004), 137-155. MR 2085300 (2005g:52019)
-
-
-
-
7
-
-
77956559718
-
Contributions to affine surface area
-
98d:52009
-
D. HUG, Contributions to affine surface area, Manuscripta Math. 91 (1996), 283-301, http://dx.doi.org/10.1007/BF02567955. MR 1416712 (98d:52009)
-
(1996)
Manuscripta Math
, vol.91
, pp. 283-301
-
-
HUG, D.1
-
8
-
-
0001307756
-
Zur Afinoberfläche konvexer Körper
-
87k:52011, German
-
K. LEICHTWEISS, Zur Afinoberfläche konvexer Körper, Manuscripta Math. 56 (1986), 429-464, http://dx.doi.org/10.1007/BF01168504. MR 860732 (87k:52011) (German)
-
(1986)
Manuscripta Math
, vol.56
, pp. 429-464
-
-
LEICHTWEISS, K.1
-
9
-
-
0000537779
-
-
M. LUDWIG and M. REITZNER, A characterization of affine surface area, Adv. Math. 147 (1999), 138-172, http://dx.doi.org/10.1006/aima.1999.1832. MR 1725817 (2000j:52018)
-
-
-
-
10
-
-
0042575606
-
-
M. LUDWIG, Ellipsoids and matrix-valued valuations, Duke Math. J. 119 (2003), 159-188, http://dx.doi.org/10.1215/S0012-7094-03- 11915-8. MR 1991649 (2004e:52015)
-
-
-
-
11
-
-
26444584569
-
-
Trans, Math. Soc. 357 (2005, electronic, MR 2159706 2006f:52005
-
_, Minkowski valuations, Trans. Amer. Math. Soc. 357 (2005), 4191-4213 (electronic), http://dx.doi.org/10.1090/S0002-9947-04-03666-9. MR 2159706 (2006f:52005)
-
Minkowski valuations
, pp. 4191-4213
-
-
LEICHTWEISS, K.1
-
12
-
-
84944151199
-
-
_, personal communication.
-
-
-
-
13
-
-
33744996708
-
-
M. LUDWIG, C. SCHUTT, and E. WERNER, Approximation of the Euclidean ball by polytopes, Studia Math. 173 (2006), 1-18. MR 2204459 (2007c:52004)
-
-
-
-
14
-
-
44949275584
-
Extended affine surface area
-
http://dx.doi.org/10.1016/0001-8708(91)90049-D. MR 1087796 92d:52012
-
E. LUTWAK, Extended affine surface area, Adv. Math. 85 (1991), 39-68, http://dx.doi.org/10.1016/0001-8708(91)90049-D. MR 1087796 (92d:52012)
-
(1991)
Adv. Math
, vol.85
, pp. 39-68
-
-
LUTWAK, E.1
-
15
-
-
84972508818
-
The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem
-
MR 1231704 94g:52008
-
_, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), 131-150. MR 1231704 (94g:52008)
-
(1993)
J. Differential Geom
, vol.38
, pp. 131-150
-
-
LUTWAK, E.1
-
16
-
-
0030600832
-
The Brunn-Minkowski-Firey theory. II Affine and geominimal surface areas
-
97f:52014
-
_, The Brunn-Minkowski-Firey theory. II Affine and geominimal surface areas, Adv. Math. 118 (1996), 244-294, http://dx.doi.org/10.1006/ aima.1996.0022. MR 1378681 (97f:52014)
-
(1996)
Adv. Math
, vol.118
, pp. 244-294
-
-
LUTWAK, E.1
-
17
-
-
84972497535
-
On the regularity of solutions to a generalization of the Minkowski problem
-
MR 1316557 95m:52007
-
E. LUTWAK and V. OLIKER, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom. 41 (1995), 227-246. MR 1316557 (95m:52007)
-
(1995)
J. Differential Geom
, vol.41
, pp. 227-246
-
-
LUTWAK, E.1
OLIKER, V.2
-
18
-
-
0034664274
-
-
E. LUTWAK, D. YANG, and G. ZHANG, A new ellipsoid associated with convex bodies, Duke Math. J. 104 (2000), 375-390, http://dx.doi.org/10.1215/S0012-7094-00-10432-2. MR 1781476 (2001j:52011)
-
-
-
-
19
-
-
0003157976
-
-
paffine isoperimetric inequalities, J. Differential Geom. 56 (2000), 111-132. MR 1863023 (2002h:52011)
-
-
-
-
20
-
-
84944175440
-
-
pSobolev inequalities, J. Differential Geom. 62 (2002), 17-38. MR 1987375 (2004d:46039)
-
-
-
-
21
-
-
27744517968
-
-
p, J. Differential Geom. 68 (2004), 159-184. MR 2152912 (2006j:52010)
-
-
-
-
22
-
-
22444453008
-
The Santaló-regions of a convex body
-
99a: 52008
-
M. MEYER and E. WERNER, The Santaló-regions of a convex body, Trans. Amer. Math. Soc. 350 (1998), 4569-4591, http://dx.doi.org/10.1090/S0002-9947-98-02162-X. MR 1466952 (99a: 52008)
-
(1998)
Trans. Amer. Math. Soc
, vol.350
, pp. 4569-4591
-
-
MEYER, M.1
WERNER, E.2
-
23
-
-
0034713473
-
-
_, On the p-affine surface area, Adv. Math. 152 (2000), 288-313, http://dx.doi.org/10.1006/aima.1999.1902. MR 1764106 (2001g:52012)
-
-
-
-
24
-
-
0001709834
-
The convex floating body
-
MR 1075144 91i:52005
-
C. SCHUTT and E. WERNER, The convex floating body, Math. Scand. 66 (1990), 275-290. MR 1075144 (91i:52005)
-
(1990)
Math. Scand
, vol.66
, pp. 275-290
-
-
SCHUTT, C.1
WERNER, E.2
-
25
-
-
84944176329
-
-
_, Polytopes with vertices chosen randomly from the boundary of a convex body, Proc. Geometric Aspects of Functional Analysis, Lecture Notes in Math., vol. 1807, Springer, Berlin, 2003, pp. 241-422. MR 2083401 (2005g:52015)
-
-
-
-
26
-
-
3242875430
-
-
_, Surface bodies and p-affine surface area, Adv. Math. 187 (2004), 98-145, http://dx.doi.org/10.1016/j.aim.2003.07.018. MR 2074173 (2005e:52015)
-
-
-
-
27
-
-
18144379864
-
-
N. S. TRUDINGER and X.-J. WANG, The affine Plateau problem, J. Amer. Math. Soc. 18 (2005), 253-289 (electronic), http://dx.doi.org/10.1090/S0894-0347-05-00475-3. MR 2137978 (2006e:53071)
-
-
-
-
28
-
-
84944177754
-
-
X.-J. WANG, Affine maximal hypersurfaces, Proc. The International Congress of Mathematicians, Vol. Ill (Beijing, 2002), Higher Ed. Press, Beijing, 2002, pp. 221-231. MR 1957534 (2004j:35110)
-
-
-
-
29
-
-
0002238931
-
Illumination bodies and affine surface area
-
MR 1292847 95g:52010
-
E. WERNER, Illumination bodies and affine surface area, Studia Math. 110 (1994), 257-269. MR 1292847 (95g:52010)
-
(1994)
Studia Math
, vol.110
, pp. 257-269
-
-
WERNER, E.1
-
30
-
-
0002099777
-
A general geometric construction for affine surface area
-
MR 1669674 99m:52008
-
_, A general geometric construction for affine surface area, Studia Math. 132 (1999), 227-238. MR 1669674 (99m:52008)
-
(1999)
Studia Math
, vol.132
, pp. 227-238
-
-
WERNER, E.1
-
31
-
-
84944146443
-
-
_, The p-affine surface area and geometric interpretations, Proc. IV International Conference in "Stochastic Geometry, Convex Bodies, Empirical Measures & Applications to Engineering Science", Vol. II (Tropea, 2001), Rend. Circ. Mat. Palermo (2) Suppl., 2002, pp. 367-382. MR 1962608 (2004c: 52006)
-
-
-
|