메뉴 건너뛰기




Volumn , Issue , 2006, Pages 247-252

Ordinal least squares support vector machines - A discriminant analysis approach

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL METHODS; DISCRIMINANT ANALYSIS; LEAST SQUARES APPROXIMATIONS; PROBLEM SOLVING; REGRESSION ANALYSIS;

EID: 38949200929     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/MLSP.2006.275556     Document Type: Conference Paper
Times cited : (2)

References (18)
  • 2
    • 0026966646 scopus 로고    scopus 로고
    • B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifier. In In Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, pages 144-52. ACM, 1992.
    • B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifier. In In Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, pages 144-52. ACM, 1992.
  • 4
    • 31844454295 scopus 로고    scopus 로고
    • W. Chu and S. S. Keerthi. New approaches to support vector ordinal regression. In in Proc. of International Conference on Machine Learning, pages 145-152. 2005.
    • W. Chu and S. S. Keerthi. New approaches to support vector ordinal regression. In in Proc. of International Conference on Machine Learning, pages 145-152. 2005.
  • 5
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2:265-292, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 9
    • 0008371352 scopus 로고    scopus 로고
    • Large margin rank boundaries for ordinal regression
    • MIT Press, Cambridge, MA
    • R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. Advances in Large Margin Classifiers, pages 115-132, 2000. MIT Press, Cambridge, MA.
    • (2000) Advances in Large Margin Classifiers , pp. 115-132
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3
  • 10
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • C.-W. Hsu and C-J. Lin. A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks, 13:415-425, 2002.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 13
    • 84899011021 scopus 로고    scopus 로고
    • Ranking with large margin principle: Two approaches
    • S. Thrun S. Becker and K. Obermayer, editors, MIT Press, Cambridge, MA
    • A. Shashua and A. Levin. Ranking with large margin principle: Two approaches. In S. Thrun S. Becker and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 937-944. MIT Press, Cambridge, MA, 2003.
    • (2003) Advances in Neural Information Processing Systems 15 , pp. 937-944
    • Shashua, A.1    Levin, A.2
  • 14
    • 12444265838 scopus 로고    scopus 로고
    • Consistency of support vector machines and other regularized kernel machines
    • I. Steinwart. Consistency of support vector machines and other regularized kernel machines. IEEE Transactions on Information Theory, 51:128-142, 2005.
    • (2005) IEEE Transactions on Information Theory , vol.51 , pp. 128-142
    • Steinwart, I.1
  • 16
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J.A.K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Letters, 9(3):293-300, 1999.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 17
    • 0036582564 scopus 로고    scopus 로고
    • A Bayesian framework for least squares support vector machine classifiers, gaussian processes and kernel Fisher discriminant analysis
    • T. Van Gestel, J.A.K. Suykens, G. Lanckriet, A. Lambrechts, B. De Moor, and J. Vandewalle. A Bayesian framework for least squares support vector machine classifiers, gaussian processes and kernel Fisher discriminant analysis. Neural Computation. 14(5):1115-1147. 2002.
    • (2002) Neural Computation , vol.14 , Issue.5 , pp. 1115-1147
    • Van Gestel, T.1    Suykens, J.A.K.2    Lanckriet, G.3    Lambrechts, A.4    De Moor, B.5    Vandewalle, J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.