-
1
-
-
33644627509
-
Solution operator approximation for delay differential equation characteristic roots computation via Runge-Kutta methods
-
Breda D. Solution operator approximation for delay differential equation characteristic roots computation via Runge-Kutta methods. Appl. Numer. Math. 56 (2006) 305-317
-
(2006)
Appl. Numer. Math.
, vol.56
, pp. 305-317
-
-
Breda, D.1
-
2
-
-
1642580774
-
Computing the characteristic roots for delay differential equations
-
Breda D., Maset S., and Vermiglio R. Computing the characteristic roots for delay differential equations. IMA J. Numer. Anal. 24 (2004) 1-19
-
(2004)
IMA J. Numer. Anal.
, vol.24
, pp. 1-19
-
-
Breda, D.1
Maset, S.2
Vermiglio, R.3
-
3
-
-
33644937447
-
Pseudospectral differencing methods for characteristic roots of delay differential equations
-
Breda D., Maset S., and Vermiglio R. Pseudospectral differencing methods for characteristic roots of delay differential equations. SIAM J. Sci. Comput. 27 (2005) 482-495
-
(2005)
SIAM J. Sci. Comput.
, vol.27
, pp. 482-495
-
-
Breda, D.1
Maset, S.2
Vermiglio, R.3
-
4
-
-
38949119189
-
-
O. Diekmann, S. van Gils, S. Verduyn Lunel, H.-O. Walther, Delay Equations, Applied Mathematical Sciences, vol. 110, Springer, Berlin, 1995.
-
O. Diekmann, S. van Gils, S. Verduyn Lunel, H.-O. Walther, Delay Equations, Applied Mathematical Sciences, vol. 110, Springer, Berlin, 1995.
-
-
-
-
5
-
-
0039483059
-
Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL
-
Engelborghs K., Luzyanina T., and Roose D. Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Software. 28 (2002) 1-21
-
(2002)
ACM Trans. Math. Software.
, vol.28
, pp. 1-21
-
-
Engelborghs, K.1
Luzyanina, T.2
Roose, D.3
-
6
-
-
38949192358
-
-
K. Engelborghs, T. Luzyanina, G. Samaey, DDE-BIFTOOL v. 2.00: a Matlab package for numerical bifurcation analysis of delay differential equations, Report TW 330, Department of Computer Science, K.U. Leuven, Leuven, Belgium, 2001. Available from 〈http://www.cs.kuleuven.be/∼twr/research/software/delay/ddebiftool.shtml〉.
-
K. Engelborghs, T. Luzyanina, G. Samaey, DDE-BIFTOOL v. 2.00: a Matlab package for numerical bifurcation analysis of delay differential equations, Report TW 330, Department of Computer Science, K.U. Leuven, Leuven, Belgium, 2001. Available from 〈http://www.cs.kuleuven.be/∼twr/research/software/delay/ddebiftool.shtml〉.
-
-
-
-
7
-
-
0038016911
-
On stability of LMS methods and characteristic roots of delay differential equations
-
Engelborghs K., and Roose D. On stability of LMS methods and characteristic roots of delay differential equations. SIAM J. Numer. Anal. 40 (2002) 629-650
-
(2002)
SIAM J. Numer. Anal.
, vol.40
, pp. 629-650
-
-
Engelborghs, K.1
Roose, D.2
-
8
-
-
38949142120
-
-
E. Hairer, S. Norsett, G. Wanner, Solving Ordinary Differential Equations. I: Nonstiff problems, Springer Series in Computational Mathematics, second ed., vol. 8, Springer, Berlin, 1993.
-
E. Hairer, S. Norsett, G. Wanner, Solving Ordinary Differential Equations. I: Nonstiff problems, Springer Series in Computational Mathematics, second ed., vol. 8, Springer, Berlin, 1993.
-
-
-
-
9
-
-
38949207723
-
-
E. Hairer, G. Wanner, Solving Ordinary Differential Equations. II: Stiff and Differential-algebraic Problems, Springer Series in Computational Mathematics, second ed., vol. 14, Springer, Berlin, 1996.
-
E. Hairer, G. Wanner, Solving Ordinary Differential Equations. II: Stiff and Differential-algebraic Problems, Springer Series in Computational Mathematics, second ed., vol. 14, Springer, Berlin, 1996.
-
-
-
-
10
-
-
38949117785
-
-
J. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, vol. 99, Springer, Berlin, 1993.
-
J. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, vol. 99, Springer, Berlin, 1993.
-
-
-
-
11
-
-
0342936163
-
bifurcation and multistability in a system of two coupled neurons with multiple time delays
-
Stability
-
Shayer L., Campbell S., and Stability. bifurcation and multistability in a system of two coupled neurons with multiple time delays. SIAM J. Appl. Math. 61 (2000) 673-700
-
(2000)
SIAM J. Appl. Math.
, vol.61
, pp. 673-700
-
-
Shayer, L.1
Campbell, S.2
-
12
-
-
37649027115
-
Numerical stability analysis of a large-scale delay system modelling a lateral semiconductor laser subject to optical feedback
-
Verheyden K., Green K., and Roose D. Numerical stability analysis of a large-scale delay system modelling a lateral semiconductor laser subject to optical feedback. Phys. Rev. E 69 (2004) 036702
-
(2004)
Phys. Rev. E
, vol.69
, pp. 036702
-
-
Verheyden, K.1
Green, K.2
Roose, D.3
-
13
-
-
38949199882
-
-
K. Verheyden, T. Luzyanina, D. Roose, Location and numerical preservation of characteristic roots of delay differential equations by LMS methods, Technical Report TW-382, Department of Computer Science, K.U. Leuven, Leuven, Belgium, December 2003. Available from 〈http://www.cs.kuleuven.be/publicaties/rapporten/tw/TW382.abs.html〉.
-
K. Verheyden, T. Luzyanina, D. Roose, Location and numerical preservation of characteristic roots of delay differential equations by LMS methods, Technical Report TW-382, Department of Computer Science, K.U. Leuven, Leuven, Belgium, December 2003. Available from 〈http://www.cs.kuleuven.be/publicaties/rapporten/tw/TW382.abs.html〉.
-
-
-
-
14
-
-
38949210019
-
-
K. Verheyden, D. Roose, Efficient numerical stability analysis of delay equations: a spectral method, in: D. Roose, W. Michiels, (Eds.), Proceedings of the IFAC Workshop on Time-Delay Systems 2004, IFAC Proceedings Volumes, 2004, pp. 209-214.
-
K. Verheyden, D. Roose, Efficient numerical stability analysis of delay equations: a spectral method, in: D. Roose, W. Michiels, (Eds.), Proceedings of the IFAC Workshop on Time-Delay Systems 2004, IFAC Proceedings Volumes, 2004, pp. 209-214.
-
-
-
|