메뉴 건너뛰기




Volumn 12, Issue 3, 2008, Pages 215-222

Solving the XOR and parity N problems using a single universal binary neuron

Author keywords

[No Author keywords available]

Indexed keywords

BOOLEAN FUNCTIONS; COMPUTATIONAL COMPLEXITY; LEARNING ALGORITHMS; NEURAL NETWORKS; NEURONS; PROBLEM SOLVING;

EID: 38949173125     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-007-0204-9     Document Type: Article
Times cited : (30)

References (18)
  • 1
    • 38949190987 scopus 로고
    • Model of the element with complete functionality
    • Technicheskaia Kibernetika (J Comput Syst Sci Int) (in Russian)
    • Aizenberg IN (1985) Model of the element with complete functionality. Izvestia Akademii Nauk SSSR, Technicheskaia Kibernetika (J Comput Syst Sci Int) (2):188-191 (in Russian)
    • (1985) Izvestia Akademii Nauk SSSR , vol.2 , pp. 188-191
    • Aizenberg, I.N.1
  • 2
    • 0346501770 scopus 로고
    • The universal logical element over the field of the complex numbers
    • (in Russian)
    • Aizenberg IN (1991) The universal logical element over the field of the complex numbers, Kibernetika (Cybern Syst Anal), (3):116-121 (in Russian)
    • (1991) Kibernetika (Cybern Syst Anal) , Issue.3 , pp. 116-121
    • Aizenberg, I.N.1
  • 3
    • 33748371451 scopus 로고    scopus 로고
    • Multilayer feedforward neural network based on multi-valued neurons (MLMVN) and a backpropagation learning algorithm
    • Aizenberg I, Moraga C (2007) Multilayer feedforward neural network based on multi-valued neurons (MLMVN) and a backpropagation learning algorithm. Soft Comput 11(2):169-183
    • (2007) Soft Comput , vol.11 , Issue.2 , pp. 169-183
    • Aizenberg, I.1    Moraga, C.2
  • 5
    • 38949134216 scopus 로고
    • Model of the neural network basic elements (Cells) with universal functionality and various hardware implementations
    • In: Kyrill & Methody Verlag, Munich
    • Aizenberg NN, Aizenberg IN (1991) Model of the neural network basic elements (Cells) with universal functionality and various hardware implementations. In: Proceedings of the 2nd international conference "Microelectronics for Neural Networks", Kyrill & Methody Verlag, Munich, pp 77-83
    • (1991) Proceedings of the 2nd International Conference "Microelectronics for Neural Networks" , pp. 77-83
    • Aizenberg, N.N.1    Aizenberg, I.N.2
  • 7
    • 84980010272 scopus 로고
    • Quickly converging learning algorithms for multi-level and universal binary neurons and solving of the some image processing problems
    • In: Mira J, Cabestany J, Prieto A (eds). Springer, Berlin
    • Aizenberg NN, Aizenberg IN (1993) Quickly converging learning algorithms for multi-level and universal binary neurons and solving of the some image processing problems. In: Mira J, Cabestany J, Prieto A (eds). Lecture notes in computer science, vol 686. Springer, Berlin, pp 230-236
    • (1993) Lecture Notes in Computer Science , vol.686 , pp. 230-236
    • Aizenberg, N.N.1    Aizenberg, I.N.2
  • 11
    • 0006735637 scopus 로고    scopus 로고
    • Minimal feedforward parity networks using threshold gates
    • Fung H, Li LK (2001) Minimal feedforward parity networks using threshold gates. Neural Comput 13:319-326
    • (2001) Neural Comput , vol.13 , pp. 319-326
    • Fung, H.1    Li, L.K.2
  • 17
    • 0348011365 scopus 로고    scopus 로고
    • Neural edge enhancer for supervised edge enhancement from noisy images
    • Suzuki K, Horiba I, Sugie N (2003) Neural edge enhancer for supervised edge enhancement from noisy images. IEEE Trans Pattern Anal Mach Intell 25(12):1582-1596
    • (2003) IEEE Trans Pattern Anal Mach Intell , vol.25 , Issue.12 , pp. 1582-1596
    • Suzuki, K.1    Horiba, I.2    Sugie, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.