메뉴 건너뛰기




Volumn 11, Issue 1, 2008, Pages 163-171

Generalized quasilinearization method for a forced duffing equation with three-point nonlinear boundary conditions

Author keywords

Duffing equation; Quadratic convergence; Quasilinearization

Indexed keywords


EID: 38949170966     PISSN: 13314343     EISSN: None     Source Type: Journal    
DOI: 10.7153/mia-11-11     Document Type: Article
Times cited : (4)

References (30)
  • 4
    • 0028485344 scopus 로고
    • An extension of the method of quasilinearization
    • V. LAKSHMIKANTHAM, An extension of the method of quasilinearization, J. Optim. Theory Appl. 82 (1994), 315-321.
    • (1994) J. Optim. Theory Appl , vol.82 , pp. 315-321
    • LAKSHMIKANTHAM, V.1
  • 5
    • 0030189041 scopus 로고    scopus 로고
    • Further improvement of generalized quasilinearization
    • V. LAKSHMIKANTHAM, Further improvement of generalized quasilinearization, Nonlinear Anal. 27 (1996), 223-227.
    • (1996) Nonlinear Anal , vol.27 , pp. 223-227
    • LAKSHMIKANTHAM, V.1
  • 6
    • 33745164886 scopus 로고    scopus 로고
    • A quasilinearization method for a class of integro-differential equations with mixed nonlinearities
    • B. AHMAD, A quasilinearization method for a class of integro-differential equations with mixed nonlinearities, Nonlinear Anal.: Real World Appl. 7 (2006), 997-1004.
    • (2006) Nonlinear Anal.: Real World Appl , vol.7 , pp. 997-1004
    • AHMAD, B.1
  • 7
    • 16244384479 scopus 로고    scopus 로고
    • Generalized quasilinearization method for afirst order differential equation with integral boundary condition
    • B. AHMAD, R. A. KHAN AND S. SIVASUNDARAM, Generalized quasilinearization method for afirst order differential equation with integral boundary condition, Dynam. Contin. Discrete Impuls. Systems Ser. A Math. Anal. 12 (2005), 289-296.
    • (2005) Dynam. Contin. Discrete Impuls. Systems Ser. A Math. Anal , vol.12 , pp. 289-296
    • AHMAD, B.1    KHAN, R.A.2    SIVASUNDARAM, S.3
  • 8
    • 23844436708 scopus 로고    scopus 로고
    • Approximation of the solution of nonlinear second order integro-differential equations
    • B. AHMAD, A. AL-SAEDI AND S. SIVASUNDARAM, Approximation of the solution of nonlinear second order integro-differential equations, Dynamic Systems Appl. 14 (2005), 253-263.
    • (2005) Dynamic Systems Appl , vol.14 , pp. 253-263
    • AHMAD, B.1    AL-SAEDI, A.2    SIVASUNDARAM, S.3
  • 9
    • 28244480801 scopus 로고    scopus 로고
    • Existence and approximation of solutions of second order nonlinear four point boundary value problems
    • R. A. KHAN AND R. RODRIGUEZ-LOPEZ, Existence and approximation of solutions of second order nonlinear four point boundary value problems, Nonlinear Anal. 63 (2005), 1094-1115.
    • (2005) Nonlinear Anal , vol.63 , pp. 1094-1115
    • KHAN, R.A.1    RODRIGUEZ-LOPEZ, R.2
  • 10
    • 15544385943 scopus 로고    scopus 로고
    • Generalized quasilinearization versus Newton's method
    • V. LAKSHMIKANTHAM AND A. S. VATSALA, Generalized quasilinearization versus Newton's method, Appl. Math. Comput. 164 (2005), 523-530.
    • (2005) Appl. Math. Comput , vol.164 , pp. 523-530
    • LAKSHMIKANTHAM, V.1    VATSALA, A.S.2
  • 11
    • 14844293527 scopus 로고    scopus 로고
    • The generalized quasilinearization method and three-point boundary value problems on time scales
    • F. M. ATICI AND S. G. TOPAL, The generalized quasilinearization method and three-point boundary value problems on time scales, Appl. Math. Lett. 18 (2005), 577-585.
    • (2005) Appl. Math. Lett , vol.18 , pp. 577-585
    • ATICI, F.M.1    TOPAL, S.G.2
  • 12
    • 21244485525 scopus 로고    scopus 로고
    • Quasilinearization method for nonlinear elliptic boundary value problems
    • A. BUICA, Quasilinearization method for nonlinear elliptic boundary value problems, J. Optim. Theory Appl. 124 (2005), 323-338.
    • (2005) J. Optim. Theory Appl , vol.124 , pp. 323-338
    • BUICA, A.1
  • 13
    • 11944254019 scopus 로고    scopus 로고
    • Generalized quasilinearization method for systems of nonlinear differential equations with periodic boundary conditions
    • A. R. ABD-ELLATEEF KAMAR AND Z. DRICI, Generalized quasilinearization method for systems of nonlinear differential equations with periodic boundary conditions, Dynam. Contin. Discrete Impuls. Systems Ser. A Math. Anal. 12 (2005), 77-85.
    • (2005) Dynam. Contin. Discrete Impuls. Systems Ser. A Math. Anal , vol.12 , pp. 77-85
    • ABD-ELLATEEF KAMAR, A.R.1    DRICI, Z.2
  • 14
    • 9644278160 scopus 로고    scopus 로고
    • Quadratic approximation of solutions for differential equations with nonlinear boundary conditions
    • T. JANKOWSKI, Quadratic approximation of solutions for differential equations with nonlinear boundary conditions, Compu. Math. Appl. 47 (2004), 1619-1626.
    • (2004) Compu. Math. Appl , vol.47 , pp. 1619-1626
    • JANKOWSKI, T.1
  • 15
    • 0742317416 scopus 로고    scopus 로고
    • The method of quasilinearization and a three-point boundary value problem
    • P. ELOE AND Y. GAO, The method of quasilinearization and a three-point boundary value problem, J. Korean Math. Soc. 39 (2002), 319-330.
    • (2002) J. Korean Math. Soc , vol.39 , pp. 319-330
    • ELOE, P.1    GAO, Y.2
  • 16
    • 0041821709 scopus 로고    scopus 로고
    • The Bellman-Kalaba-Lakshamikantham quasilinearization method for Neumann problems
    • B. AHMAD, J. J. NIETO AND N. SHAHZAD, The Bellman-Kalaba-Lakshamikantham quasilinearization method for Neumann problems, J. Math. Anal. Appl. 257 (2001), 356-363.
    • (2001) J. Math. Anal. Appl , vol.257 , pp. 356-363
    • AHMAD, B.1    NIETO, J.J.2    SHAHZAD, N.3
  • 17
    • 0035529805 scopus 로고    scopus 로고
    • Quasilinearization and rate of convergence for higher order nonlinear periodic boundary value problems
    • A. CABADA AND J. J. NIETO, Quasilinearization and rate of convergence for higher order nonlinear periodic boundary value problems, J. Optim. Theory Appl. 108 (2001), 97-107.
    • (2001) J. Optim. Theory Appl , vol.108 , pp. 97-107
    • CABADA, A.1    NIETO, J.J.2
  • 18
    • 0038503403 scopus 로고    scopus 로고
    • Biomathematical modeling and analysis of blood flow in an intracranial aneurysms
    • S. NIKOLOV, S. STOYTCHEV, A. TORRES AND J. J. NIETO, Biomathematical modeling and analysis of blood flow in an intracranial aneurysms, Neurological Research 25 (2003), 497-504.
    • (2003) Neurological Research , vol.25 , pp. 497-504
    • NIKOLOV, S.1    STOYTCHEV, S.2    TORRES, A.3    NIETO, J.J.4
  • 19
    • 0034253923 scopus 로고    scopus 로고
    • A nonlinear biomathematical model for the study of intracranial aneurysms
    • J. J. NIETO AND A. TORRES, A nonlinear biomathematical model for the study of intracranial aneurysms, J. Neurological Science 177 (2000), 18-23.
    • (2000) J. Neurological Science , vol.177 , pp. 18-23
    • NIETO, J.J.1    TORRES, A.2
  • 21
    • 27844457616 scopus 로고    scopus 로고
    • Quasilinearization and multiple solutions of the Emden-Fowler type equation
    • I. YERMACHENKO AND F. SADYRBAEV, Quasilinearization and multiple solutions of the Emden-Fowler type equation, Math. Model. Anal. 10 (2005), 41-50.
    • (2005) Math. Model. Anal , vol.10 , pp. 41-50
    • YERMACHENKO, I.1    SADYRBAEV, F.2
  • 22
    • 0035976505 scopus 로고    scopus 로고
    • Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs
    • V. B. MANDELZWEIG AND F. TABAKIN, Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs, Computer Physics Comm. 141 (2001), 268-281.
    • (2001) Computer Physics Comm , vol.141 , pp. 268-281
    • MANDELZWEIG, V.B.1    TABAKIN, F.2
  • 24
    • 0021464088 scopus 로고
    • On certain boundary value problems for second-order linear ordinary differential equations with singularities
    • I. T. KIGURADZE AND A. G. LOMTATJDZE, On certain boundary value problems for second-order linear ordinary differential equations with singularities, J. Math. Anal. Appl. 101 (1984), 325-347.
    • (1984) J. Math. Anal. Appl , vol.101 , pp. 325-347
    • KIGURADZE, I.T.1    LOMTATJDZE, A.G.2
  • 25
    • 0001284792 scopus 로고
    • A second order m -point boundary value problem at resonance
    • C. P. GUPTA, A second order m -point boundary value problem at resonance, Nonlinear Anal. 24 (1995), 1483-1489.
    • (1995) Nonlinear Anal , vol.24 , pp. 1483-1489
    • GUPTA, C.P.1
  • 26
    • 13844295441 scopus 로고    scopus 로고
    • A priori estimates for the existence of a solution for a multi-point boundary value problem
    • C. P. GUPTA AND S. TROPTMCHUCK, A priori estimates for the existence of a solution for a multi-point boundary value problem, J. Inequal. Appl. 5 (2000), 351-365.
    • (2000) J. Inequal. Appl , vol.5 , pp. 351-365
    • GUPTA, C.P.1    TROPTMCHUCK, S.2
  • 27
    • 21944438013 scopus 로고    scopus 로고
    • Generalized quasilinearization method for a secondorder differential equation with Dirichlet boundary conditions
    • J. J. NIETO, Generalized quasilinearization method for a secondorder differential equation with Dirichlet boundary conditions, Proc. Amer. Math. Soc. 125 (1997), 2599-2604.
    • (1997) Proc. Amer. Math. Soc , vol.125 , pp. 2599-2604
    • NIETO, J.J.1
  • 28
    • 0013184696 scopus 로고    scopus 로고
    • A note on rapid convergence of approximate solutions for an ordinary Dirichlet problem
    • A. CABADA, J. J. NIETO AND RAFAEL PTTA-DA-VEIGE, A note on rapid convergence of approximate solutions for an ordinary Dirichlet problem, Dynam. Contin. Discrete Impuls. Systems 4 (1998), 23-30.
    • (1998) Dynam. Contin. Discrete Impuls. Systems , vol.4 , pp. 23-30
    • CABADA, A.1    NIETO, J.J.2    PTTA-DA-VEIGE, R.3
  • 29
    • 38949090715 scopus 로고    scopus 로고
    • Generalized quasilinearization method for nonlinear nonhomogeneous Dirichlet boundary value problems
    • B. AHMAD AND H. HUDA, Generalized quasilinearization method for nonlinear nonhomogeneous Dirichlet boundary value problems, Int. J. Math. Game Theory Algebra 12 (2002), 461-467.
    • (2002) Int. J. Math. Game Theory Algebra , vol.12 , pp. 461-467
    • AHMAD, B.1    HUDA, H.2
  • 30
    • 38949158790 scopus 로고    scopus 로고
    • L. JACKSON, Boundary value problems for ordinary differential equations (Studies in Ordinary Differential Equations, Ed J. K. Hale), MAA Studies in Mathematics, Mathematical Association of America, 14 (1977), 93-127.
    • L. JACKSON, Boundary value problems for ordinary differential equations (Studies in Ordinary Differential Equations, Ed J. K. Hale), MAA Studies in Mathematics, Mathematical Association of America, 14 (1977), 93-127.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.