-
1
-
-
0033115309
-
Nonlinear aeroelastic analysis of airfoils: Bifurcation and chaos[J]
-
3
-
Lee B H K, Price S J, Wong Y S. Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos[J]. Progress Aerosp Sci, 1999, 35(3):205-344.
-
(1999)
Progress Aerosp Sci
, vol.35
, pp. 205-344
-
-
Lee, B.H.K.1
Price, S.J.2
Wong, Y.S.3
-
2
-
-
0027114993
-
Bifurcation analysis of airfoil in incompressible flow[J]
-
1
-
Liu J K, Zhao L C. Bifurcation analysis of airfoil in incompressible flow[J]. J Sound Vib, 1992, 154(1):117-124.
-
(1992)
J Sound Vib
, vol.154
, pp. 117-124
-
-
Liu, J.K.1
Zhao, L.C.2
-
3
-
-
0037068913
-
Limit cycle flutter of airfoils in steady and unsteady flows[J]
-
2
-
Shahrzad P, Mahzoon M. Limit cycle flutter of airfoils in steady and unsteady flows[J]. J Sound Vib, 2002, 256(2):213-225.
-
(2002)
J Sound Vib
, vol.256
, pp. 213-225
-
-
Shahrzad, P.1
Mahzoon, M.2
-
4
-
-
0029388162
-
KBM method of analyzing limit cycle flutter of a wing with an external store and comparison with wind tunnel test[J]
-
2
-
Yang Y R. KBM method of analyzing limit cycle flutter of a wing with an external store and comparison with wind tunnel test[J]. J Sound Vib, 1995, 187(2):271-280.
-
(1995)
J Sound Vib
, vol.187
, pp. 271-280
-
-
Yang, Y.R.1
-
5
-
-
4444319322
-
The secondary bifurcation of an aeroelastic airfoil motion: Effect of high harmonics[J]
-
1
-
Liu L P, Dowell E H. The secondary bifurcation of an aeroelastic airfoil motion: effect of high harmonics[J]. Nonlinear Dyn, 2004, 37(1):31-49.
-
(2004)
Nonlinear Dyn
, vol.37
, pp. 31-49
-
-
Liu, L.P.1
Dowell, E.H.2
-
6
-
-
33748689105
-
Incremental harmonic balance method for airfoil flutter with multiple strong nonlinearities[J]
-
7
-
Cai M, Liu J K, Li J. Incremental harmonic balance method for airfoil flutter with multiple strong nonlinearities[J]. Appl Math Mech-Engl Ed, 2006, 27(7):953-958.
-
(2006)
Appl Math Mech-Engl Ed
, vol.27
, pp. 953-958
-
-
Cai, M.1
Liu, J.K.2
Li, J.3
-
7
-
-
0028542990
-
Limit cycle phenomena in computational transonic aeroelasticity[J]
-
6
-
Kousen K A, Bendiksen O O. Limit cycle phenomena in computational transonic aeroelasticity[J]. J Aircraft, 1994, 31(6):1257-1263.
-
(1994)
J Aircraft
, vol.31
, pp. 1257-1263
-
-
Kousen, K.A.1
Bendiksen, O.O.2
-
8
-
-
35248830551
-
Bifurcation point analysis of airfoil flutter with structural nonlinearity[ M]
-
Swets Zeitlinger Publishers Lisse, Netherland
-
Liu J K, Zhao L C, Fang T. Bifurcation point analysis of airfoil flutter with structural nonlinearity[ M]. In: Advances in Nonlinear Dynamics in China-Theory and Practice, Chapter 3, Lisse, Netherland: Swets Zeitlinger Publishers, 2002.
-
(2002)
Advances in Nonlinear Dynamics in China-Theory and Practice
-
-
Liu, J.K.1
Zhao, L.C.2
Fang, T.3
-
9
-
-
0001138577
-
Analysis and computation of nonlinear dynamic response of a two-degree-of-freedom system and its application in aeroelasticity[J]
-
3
-
Lee B H K, Gong L, Wong Y S. Analysis and computation of nonlinear dynamic response of a two-degree-of-freedom system and its application in aeroelasticity[J]. J of Fluids Struct, 1997, 11(3):225-246.
-
(1997)
J of Fluids Struct
, vol.11
, pp. 225-246
-
-
Lee, B.H.K.1
Gong, L.2
Wong, Y.S.3
-
10
-
-
0034224760
-
Application of the center manifold theory in nonlinear aeroelasticity[J]
-
4
-
Liu L, Wong Y S, Lee B H K. Application of the center manifold theory in nonlinear aeroelasticity[J]. J Sound Vib, 2000, 234(4):641-659.
-
(2000)
J Sound Vib
, vol.234
, pp. 641-659
-
-
Liu, L.1
Wong, Y.S.2
Lee, B.H.K.3
-
11
-
-
4544255067
-
Structural non-linearities and the nature of the classic flutter instability[ J]
-
4/5
-
Coller B D, Chamara P A. Structural non-linearities and the nature of the classic flutter instability[ J]. J Sound Vib, 2004, 277(4/5):711-739.
-
(2004)
J Sound Vib
, vol.277
, pp. 711-739
-
-
Coller, B.D.1
Chamara, P.A.2
-
12
-
-
0034155835
-
Bifurcation analysis of a double pendulum with internal resonance[J]
-
3
-
Bi Q S, Chen Y S. Bifurcation analysis of a double pendulum with internal resonance[J]. Appl Math Mech-Engl Ed, 2000, 21(3):255-264.
-
(2000)
Appl Math Mech-Engl Ed
, vol.21
, pp. 255-264
-
-
Bi, Q.S.1
Chen, Y.S.2
-
13
-
-
0034313329
-
A new approach for the computation of Hopf bifurcation points[J]
-
11
-
Ye R S. A new approach for the computation of Hopf bifurcation points[J]. Appl Math Mech-Engl Ed, 2000, 21(11):1300-1307.
-
(2000)
Appl Math Mech-Engl Ed
, vol.21
, pp. 1300-1307
-
-
Ye, R.S.1
-
14
-
-
18344396494
-
Bifurcation in two-dimensional neural network model with delay[J]
-
2
-
Wei J J, Zhang C R, Li X L. Bifurcation in two-dimensional neural network model with delay[J]. Appl Math Mech-Engl Ed, 2005, 26(2):210-217.
-
(2005)
Appl Math Mech-Engl Ed
, vol.26
, pp. 210-217
-
-
Wei, J.J.1
Zhang, C.R.2
Li, X.L.3
-
17
-
-
0004875004
-
Complex normal form for strongly nonlinear vibration systems exemplified by Duffing-van der Pol equation[J]
-
5
-
Leung A Y T, Zhang Q C. Complex normal form for strongly nonlinear vibration systems exemplified by Duffing-van der Pol equation[J]. J Sound Vib, 1997, 213(5):907-914.
-
(1997)
J Sound Vib
, vol.213
, pp. 907-914
-
-
Leung, A.Y.T.1
Zhang, Q.C.2
|