-
1
-
-
38949113517
-
-
Y. Alexander, R.P. Duin, Novelty detection using self-organizing maps, in: Progress in Connectionist-Based Information Systems, Springer, London, 1997, pp. 1322-1325.
-
Y. Alexander, R.P. Duin, Novelty detection using self-organizing maps, in: Progress in Connectionist-Based Information Systems, Springer, London, 1997, pp. 1322-1325.
-
-
-
-
3
-
-
0038294452
-
Haar wavelets for efficient similarity search of time-series: with and without time warping
-
Chan K.-P., Fu W.-c., and Yu C. Haar wavelets for efficient similarity search of time-series: with and without time warping. IEEE Trans. Knowledge Data Eng. 15 3 (2003) 686-705
-
(2003)
IEEE Trans. Knowledge Data Eng.
, vol.15
, Issue.3
, pp. 686-705
-
-
Chan, K.-P.1
Fu, W.-c.2
Yu, C.3
-
4
-
-
38949092700
-
-
D. Dasgupta, S. Forrest, Novelty detection in time series data using ideas from immunology, in: Proceedings of the Fifth International Conference on Intelligent Systems, Reno, Nevada, June 19-21, 1996.
-
D. Dasgupta, S. Forrest, Novelty detection in time series data using ideas from immunology, in: Proceedings of the Fifth International Conference on Intelligent Systems, Reno, Nevada, June 19-21, 1996.
-
-
-
-
5
-
-
38949085043
-
-
D. Decoste, Mining multivariate time-series sensor data to discover behavior envelopes, in: Proceedings of the Third Conference on Knowledge Discovery and Data Mining, AAAI Press, 1997, pp. 151-154.
-
D. Decoste, Mining multivariate time-series sensor data to discover behavior envelopes, in: Proceedings of the Third Conference on Knowledge Discovery and Data Mining, AAAI Press, 1997, pp. 151-154.
-
-
-
-
6
-
-
38949137586
-
-
T. Edwards, Discrete wavelet transforms: theory and implementation, Technical Report, Stanford University, 1991.
-
T. Edwards, Discrete wavelet transforms: theory and implementation, Technical Report, Stanford University, 1991.
-
-
-
-
8
-
-
38949169380
-
-
V. Jagadish, N. Koudas, S. Muthukrishnan. Mining deviants in a time series database, in: Proceedings of the 25th International Conference on Very Large Data Bases, Morgan Kaufmann Publishers Inc., San Francisco, 1999, pp. 102-113.
-
V. Jagadish, N. Koudas, S. Muthukrishnan. Mining deviants in a time series database, in: Proceedings of the 25th International Conference on Very Large Data Bases, Morgan Kaufmann Publishers Inc., San Francisco, 1999, pp. 102-113.
-
-
-
-
9
-
-
0035336998
-
Two-phase clustering process for outliers detection
-
Jiang M.F., Tseng S.S., and Su C.M. Two-phase clustering process for outliers detection. Pattern Recognition Lett. 22 6/7 (2001) 691-700
-
(2001)
Pattern Recognition Lett.
, vol.22
, Issue.6-7
, pp. 691-700
-
-
Jiang, M.F.1
Tseng, S.S.2
Su, C.M.3
-
10
-
-
0141463039
-
-
E. Keogh, S. Lonardi, W. Chiu, Finding surprising patterns in a time series database in linear time and space, in: Proceedings of the Eigth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, New York, 2002, pp. 550-556.
-
E. Keogh, S. Lonardi, W. Chiu, Finding surprising patterns in a time series database in linear time and space, in: Proceedings of the Eigth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, New York, 2002, pp. 550-556.
-
-
-
-
11
-
-
85040241330
-
Dimensionality reduction for fast similarity search in large time series databases
-
Keogh E.J., Chakrabarti K., Pazzani M.J., and Mehrotra S. Dimensionality reduction for fast similarity search in large time series databases. Knowledge Inform. Systems 3 3 (2001) 263-286
-
(2001)
Knowledge Inform. Systems
, vol.3
, Issue.3
, pp. 263-286
-
-
Keogh, E.J.1
Chakrabarti, K.2
Pazzani, M.J.3
Mehrotra, S.4
-
12
-
-
38949104983
-
-
J. Lin, M. Vlachos, E. Keogh, D. Gunopulos, Iterative incremental clustering of time series, in: Proceedings of the IX Conference on Extending Database Technology (EDBT 2004), Crete, Greece, March 14-18, 2004.
-
J. Lin, M. Vlachos, E. Keogh, D. Gunopulos, Iterative incremental clustering of time series, in: Proceedings of the IX Conference on Extending Database Technology (EDBT 2004), Crete, Greece, March 14-18, 2004.
-
-
-
-
13
-
-
70350649248
-
-
J. Ma, S. Perkins. Online novelty detection on temporal sequences, in: Proceedings of the International Conference on Knowledge Discovery and Data Mining, ACM Press, New York, 2003, pp. 24-27.
-
J. Ma, S. Perkins. Online novelty detection on temporal sequences, in: Proceedings of the International Conference on Knowledge Discovery and Data Mining, ACM Press, New York, 2003, pp. 24-27.
-
-
-
-
14
-
-
84948141376
-
-
L. Martin, A Mixture Approach to Novelty Detection Using Training Data With Outliers, Lecture Notes in Computer Science, vol. 2167, Springer, Berlin, 2001, pp. 300-310.
-
L. Martin, A Mixture Approach to Novelty Detection Using Training Data With Outliers, Lecture Notes in Computer Science, vol. 2167, Springer, Berlin, 2001, pp. 300-310.
-
-
-
-
15
-
-
0242686220
-
Search for patterns in compressed time series
-
Prat K.B., and Fink E. Search for patterns in compressed time series. Internat. J. Image Graphics 2 1 (2002) 89-106
-
(2002)
Internat. J. Image Graphics
, vol.2
, Issue.1
, pp. 89-106
-
-
Prat, K.B.1
Fink, E.2
-
16
-
-
0039845384
-
-
S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining outliers from large data sets, in: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, ACM Press, New York, 2000, pp. 427-438.
-
S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining outliers from large data sets, in: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, ACM Press, New York, 2000, pp. 427-438.
-
-
-
-
17
-
-
38949088465
-
-
SantaFe data, 〈 http://www.psych.stanford.edu/~andreas/Time-Series/SantaFe.html〉 [EB/OL], 2006-3-20.
-
SantaFe data, 〈 http://www.psych.stanford.edu/~andreas/Time-Series/SantaFe.html〉 [EB/OL], 2006-3-20.
-
-
-
-
18
-
-
53949108553
-
-
C. Shahabi, X. Tian, W. Zhao, TSA-Tree: a wavelet-based approach to improve the efficiency of multi-level surprise and trend queries on time-series data, in: Proceedings of the 12th International Conference on Scientific and Statistical Database Management (SSDBM'00), IEEE Computer Society, Berlin, Germany, 2000, pp. 55-68.
-
C. Shahabi, X. Tian, W. Zhao, TSA-Tree: a wavelet-based approach to improve the efficiency of multi-level surprise and trend queries on time-series data, in: Proceedings of the 12th International Conference on Scientific and Statistical Database Management (SSDBM'00), IEEE Computer Society, Berlin, Germany, 2000, pp. 55-68.
-
-
-
-
19
-
-
0242540409
-
-
K. Yamanishi, J.-i. Takeuchi, A unifying framework for detecting outliers and change points from non-stationary time series data, in: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, New York, 2002, pp. 676-681.
-
K. Yamanishi, J.-i. Takeuchi, A unifying framework for detecting outliers and change points from non-stationary time series data, in: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, New York, 2002, pp. 676-681.
-
-
-
|