메뉴 건너뛰기




Volumn 214, Issue 1, 2008, Pages 227-237

Erratum to: "Multi-scale anomaly detection algorithm based on infrequent pattern of time series" [J. Comput. Appl. Math. 214(1) (2008) 227-237] (DOI:10.1016/j.cam.2007.02.027);Multi-scale anomaly detection algorithm based on infrequent pattern of time series

Author keywords

Anomaly detection; Linear pattern; Support count; Time series; Wavelet transform

Indexed keywords

ALGORITHMS; COMPUTATIONAL COMPLEXITY; WAVELET TRANSFORMS;

EID: 38949121665     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2009.04.001     Document Type: Erratum
Times cited : (40)

References (19)
  • 1
    • 38949113517 scopus 로고    scopus 로고
    • Y. Alexander, R.P. Duin, Novelty detection using self-organizing maps, in: Progress in Connectionist-Based Information Systems, Springer, London, 1997, pp. 1322-1325.
    • Y. Alexander, R.P. Duin, Novelty detection using self-organizing maps, in: Progress in Connectionist-Based Information Systems, Springer, London, 1997, pp. 1322-1325.
  • 3
    • 0038294452 scopus 로고    scopus 로고
    • Haar wavelets for efficient similarity search of time-series: with and without time warping
    • Chan K.-P., Fu W.-c., and Yu C. Haar wavelets for efficient similarity search of time-series: with and without time warping. IEEE Trans. Knowledge Data Eng. 15 3 (2003) 686-705
    • (2003) IEEE Trans. Knowledge Data Eng. , vol.15 , Issue.3 , pp. 686-705
    • Chan, K.-P.1    Fu, W.-c.2    Yu, C.3
  • 4
    • 38949092700 scopus 로고    scopus 로고
    • D. Dasgupta, S. Forrest, Novelty detection in time series data using ideas from immunology, in: Proceedings of the Fifth International Conference on Intelligent Systems, Reno, Nevada, June 19-21, 1996.
    • D. Dasgupta, S. Forrest, Novelty detection in time series data using ideas from immunology, in: Proceedings of the Fifth International Conference on Intelligent Systems, Reno, Nevada, June 19-21, 1996.
  • 5
    • 38949085043 scopus 로고    scopus 로고
    • D. Decoste, Mining multivariate time-series sensor data to discover behavior envelopes, in: Proceedings of the Third Conference on Knowledge Discovery and Data Mining, AAAI Press, 1997, pp. 151-154.
    • D. Decoste, Mining multivariate time-series sensor data to discover behavior envelopes, in: Proceedings of the Third Conference on Knowledge Discovery and Data Mining, AAAI Press, 1997, pp. 151-154.
  • 6
    • 38949137586 scopus 로고    scopus 로고
    • T. Edwards, Discrete wavelet transforms: theory and implementation, Technical Report, Stanford University, 1991.
    • T. Edwards, Discrete wavelet transforms: theory and implementation, Technical Report, Stanford University, 1991.
  • 8
    • 38949169380 scopus 로고    scopus 로고
    • V. Jagadish, N. Koudas, S. Muthukrishnan. Mining deviants in a time series database, in: Proceedings of the 25th International Conference on Very Large Data Bases, Morgan Kaufmann Publishers Inc., San Francisco, 1999, pp. 102-113.
    • V. Jagadish, N. Koudas, S. Muthukrishnan. Mining deviants in a time series database, in: Proceedings of the 25th International Conference on Very Large Data Bases, Morgan Kaufmann Publishers Inc., San Francisco, 1999, pp. 102-113.
  • 9
    • 0035336998 scopus 로고    scopus 로고
    • Two-phase clustering process for outliers detection
    • Jiang M.F., Tseng S.S., and Su C.M. Two-phase clustering process for outliers detection. Pattern Recognition Lett. 22 6/7 (2001) 691-700
    • (2001) Pattern Recognition Lett. , vol.22 , Issue.6-7 , pp. 691-700
    • Jiang, M.F.1    Tseng, S.S.2    Su, C.M.3
  • 10
    • 0141463039 scopus 로고    scopus 로고
    • E. Keogh, S. Lonardi, W. Chiu, Finding surprising patterns in a time series database in linear time and space, in: Proceedings of the Eigth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, New York, 2002, pp. 550-556.
    • E. Keogh, S. Lonardi, W. Chiu, Finding surprising patterns in a time series database in linear time and space, in: Proceedings of the Eigth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, New York, 2002, pp. 550-556.
  • 11
    • 85040241330 scopus 로고    scopus 로고
    • Dimensionality reduction for fast similarity search in large time series databases
    • Keogh E.J., Chakrabarti K., Pazzani M.J., and Mehrotra S. Dimensionality reduction for fast similarity search in large time series databases. Knowledge Inform. Systems 3 3 (2001) 263-286
    • (2001) Knowledge Inform. Systems , vol.3 , Issue.3 , pp. 263-286
    • Keogh, E.J.1    Chakrabarti, K.2    Pazzani, M.J.3    Mehrotra, S.4
  • 12
    • 38949104983 scopus 로고    scopus 로고
    • J. Lin, M. Vlachos, E. Keogh, D. Gunopulos, Iterative incremental clustering of time series, in: Proceedings of the IX Conference on Extending Database Technology (EDBT 2004), Crete, Greece, March 14-18, 2004.
    • J. Lin, M. Vlachos, E. Keogh, D. Gunopulos, Iterative incremental clustering of time series, in: Proceedings of the IX Conference on Extending Database Technology (EDBT 2004), Crete, Greece, March 14-18, 2004.
  • 13
    • 70350649248 scopus 로고    scopus 로고
    • J. Ma, S. Perkins. Online novelty detection on temporal sequences, in: Proceedings of the International Conference on Knowledge Discovery and Data Mining, ACM Press, New York, 2003, pp. 24-27.
    • J. Ma, S. Perkins. Online novelty detection on temporal sequences, in: Proceedings of the International Conference on Knowledge Discovery and Data Mining, ACM Press, New York, 2003, pp. 24-27.
  • 14
    • 84948141376 scopus 로고    scopus 로고
    • L. Martin, A Mixture Approach to Novelty Detection Using Training Data With Outliers, Lecture Notes in Computer Science, vol. 2167, Springer, Berlin, 2001, pp. 300-310.
    • L. Martin, A Mixture Approach to Novelty Detection Using Training Data With Outliers, Lecture Notes in Computer Science, vol. 2167, Springer, Berlin, 2001, pp. 300-310.
  • 15
    • 0242686220 scopus 로고    scopus 로고
    • Search for patterns in compressed time series
    • Prat K.B., and Fink E. Search for patterns in compressed time series. Internat. J. Image Graphics 2 1 (2002) 89-106
    • (2002) Internat. J. Image Graphics , vol.2 , Issue.1 , pp. 89-106
    • Prat, K.B.1    Fink, E.2
  • 16
    • 0039845384 scopus 로고    scopus 로고
    • S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining outliers from large data sets, in: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, ACM Press, New York, 2000, pp. 427-438.
    • S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining outliers from large data sets, in: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, ACM Press, New York, 2000, pp. 427-438.
  • 17
    • 38949088465 scopus 로고    scopus 로고
    • SantaFe data, 〈 http://www.psych.stanford.edu/~andreas/Time-Series/SantaFe.html〉 [EB/OL], 2006-3-20.
    • SantaFe data, 〈 http://www.psych.stanford.edu/~andreas/Time-Series/SantaFe.html〉 [EB/OL], 2006-3-20.
  • 18
    • 53949108553 scopus 로고    scopus 로고
    • C. Shahabi, X. Tian, W. Zhao, TSA-Tree: a wavelet-based approach to improve the efficiency of multi-level surprise and trend queries on time-series data, in: Proceedings of the 12th International Conference on Scientific and Statistical Database Management (SSDBM'00), IEEE Computer Society, Berlin, Germany, 2000, pp. 55-68.
    • C. Shahabi, X. Tian, W. Zhao, TSA-Tree: a wavelet-based approach to improve the efficiency of multi-level surprise and trend queries on time-series data, in: Proceedings of the 12th International Conference on Scientific and Statistical Database Management (SSDBM'00), IEEE Computer Society, Berlin, Germany, 2000, pp. 55-68.
  • 19
    • 0242540409 scopus 로고    scopus 로고
    • K. Yamanishi, J.-i. Takeuchi, A unifying framework for detecting outliers and change points from non-stationary time series data, in: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, New York, 2002, pp. 676-681.
    • K. Yamanishi, J.-i. Takeuchi, A unifying framework for detecting outliers and change points from non-stationary time series data, in: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, New York, 2002, pp. 676-681.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.