-
1
-
-
0000989527
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.80.197
-
S. P. Strong, R. Köberle, R. R. de Ruyter van Steveninck, and W. Bialek, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.80.197 80, 197 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 197
-
-
Strong, S.P.1
Köberle, R.2
Van Steveninck, R.R.D.R.3
Bialek, W.4
-
5
-
-
0032830151
-
-
NERNET 0896-6273 10.1016/S0896-6273(00)80821-1
-
W. Singer, Neuron NERNET 0896-6273 10.1016/S0896-6273(00)80821-1 24, 49 (1999).
-
(1999)
Neuron
, vol.24
, pp. 49
-
-
Singer, W.1
-
6
-
-
0030000187
-
-
COPUEN 0959-4388 10.1016/S0959-4388(96)80070-5
-
A. Treisman, Curr. Opin. Neurobiol. COPUEN 0959-4388 10.1016/S0959- 4388(96)80070-5 6, 171 (1996).
-
(1996)
Curr. Opin. Neurobiol.
, vol.6
, pp. 171
-
-
Treisman, A.1
-
10
-
-
0032830545
-
-
NERNET 0896-6273 10.1016/S0896-6273(00)80822-3
-
M. Shadlen and J. A. Movshon, Neuron NERNET 0896-6273 10.1016/S0896-6273(00)80822-3 24, 67 (1999).
-
(1999)
Neuron
, vol.24
, pp. 67
-
-
Shadlen, M.1
Movshon, J.A.2
-
12
-
-
35949018382
-
-
RMPHAT 0034-6861 10.1103/RevModPhys.57.617
-
J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.57.617 57, 617 (1985).
-
(1985)
Rev. Mod. Phys.
, vol.57
, pp. 617
-
-
Eckmann, J.-P.1
Ruelle, D.2
-
13
-
-
38949116139
-
-
In order to be able to proceed with analytical calculations, we only consider autonomous networks. However, note that every element of an active channel generates an information signal that can be interpreted as an external time-dependent input of the channel.
-
In order to be able to proceed with analytical calculations, we only consider autonomous networks. However, note that every element of an active channel generates an information signal that can be interpreted as an external time-dependent input of the channel.
-
-
-
-
14
-
-
38949132882
-
-
If the subspace α has euclidian dimension Dα, and the subspace β euclidian dimension Dβ, the subspace α,β will have an euclidian dimension Dα + Dβ. The course graining is realized by hypercubes with volume Dα, Dβ, and Dα + Dβ, for the subspaces α, β, and α,β, respectively. At this particular point of the manuscript, we consider the active channel to be formed by only one receiver and one transmitter such that the subspace α,β represents the whole channel.
-
If the subspace α has euclidian dimension Dα, and the subspace β euclidian dimension Dβ, the subspace α,β will have an euclidian dimension Dα + Dβ. The course graining is realized by hypercubes with volume Dα, Dβ, and Dα + Dβ, for the subspaces α, β, and α,β, respectively. At this particular point of the manuscript, we consider the active channel to be formed by only one receiver and one transmitter such that the subspace α,β represents the whole channel.
-
-
-
-
17
-
-
0003513785
-
-
edited by D. A. Rand and L. S. Young (Springer-Verlag, New York
-
F. Takens, in Dynamical Systems and Turbulence, edited by, D. A. Rand, and, L. S. Young, (Springer-Verlag, New York, 1980).
-
(1980)
Dynamical Systems and Turbulence
-
-
Takens, F.1
-
18
-
-
38949141404
-
-
In Eq. 3, we assume that the subspaces α and β contribute each with at most one positive (or one negative) λ. Otherwise, a summation would have to be carried out over all possible positive (negative) exponents.
-
In Eq. 3, we assume that the subspaces α and β contribute each with at most one positive (or one negative) λ. Otherwise, a summation would have to be carried out over all possible positive (negative) exponents.
-
-
-
-
19
-
-
0031272384
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.79.3787
-
E. Bollt, Y. C. Lai, and C. Grebogi, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.79.3787 79, 3787 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 3787
-
-
Bollt, E.1
Lai, Y.C.2
Grebogi, C.3
-
20
-
-
33244483931
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.72.045202
-
M. S. Baptista and J. Kurths, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.72.045202 72, 045202 (R) (2005).
-
(2005)
Phys. Rev. e
, vol.72
, pp. 045202
-
-
Baptista, M.S.1
Kurths, J.2
-
21
-
-
38949112675
-
-
Systems of bidirectional equal couplings can be considered as models of electrical gap junctions, a coupling that allows bidirectional flowing of information in neural networks.
-
Systems of bidirectional equal couplings can be considered as models of electrical gap junctions, a coupling that allows bidirectional flowing of information in neural networks.
-
-
-
-
22
-
-
0343689904
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.64.821
-
L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.64.821 64, 821 (1990).
-
(1990)
Phys. Rev. Lett.
, vol.64
, pp. 821
-
-
Pecora, L.M.1
Carroll, T.L.2
-
23
-
-
0004865884
-
-
PYLAAG 0375-9601 10.1016/S0375-9601(98)00604-5
-
R. Vilela Mendes, Phys. Lett. A PYLAAG 0375-9601 10.1016/S0375-9601(98) 00604-5 248, 167 (1998).
-
(1998)
Phys. Lett. A
, vol.248
, pp. 167
-
-
Vilela Mendes, R.1
-
24
-
-
0000357105
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.60.979
-
R. Badii, G. Broggi, B. Derighetti, M. Ravani, S. Ciliberto, A. Politi, and M. A. Rubio, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.60.979 60, 979 (1988).
-
(1988)
Phys. Rev. Lett.
, vol.60
, pp. 979
-
-
Badii, R.1
Broggi, G.2
Derighetti, B.3
Ravani, M.4
Ciliberto, S.5
Politi, A.6
Rubio, M.A.7
-
25
-
-
0003582543
-
-
Cambridge University Press, New York
-
E. Ott, Chaos in Dynamical Systems (Cambridge University Press, New York, 2002).
-
(2002)
Chaos in Dynamical Systems
-
-
Ott, E.1
-
27
-
-
38949182826
-
-
In fact, D1 (α) λ (α) = D1 (β) | λ (β) |, which means that the rate of information produced in the transmiter D1 (α) λ (α) is conserved by the channel, and thus completely arrives at the receiver.
-
In fact, D1 (α) λ (α) = D1 (β) | λ (β) |, which means that the rate of information produced in the transmiter D1 (α) λ (α) is conserved by the channel, and thus completely arrives at the receiver.
-
-
-
-
28
-
-
41349083059
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.65.055201
-
M. S. Baptista and L. López, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.65.055201 65, 055201 (R) (2002).
-
(2002)
Phys. Rev. e
, vol.65
, pp. 055201
-
-
Baptista, M.S.1
López, L.2
-
30
-
-
10644288641
-
-
JNRSDS 0270-6474 10.1523/JNEUROSCI.3907-04.2004
-
S. P. Marshall and E. J. Lang, J. Neurosci. JNRSDS 0270-6474 10.1523/JNEUROSCI.3907-04.2004 24, 11356 (2004).
-
(2004)
J. Neurosci.
, vol.24
, pp. 11356
-
-
Marshall, S.P.1
Lang, E.J.2
-
35
-
-
27744438719
-
-
NANEFN 1097-6256 10.1038/nn1513
-
R. Luna, Nat. Neurosci. NANEFN 1097-6256 10.1038/nn1513 8, 1210 (2005).
-
(2005)
Nat. Neurosci.
, vol.8
, pp. 1210
-
-
Luna, R.1
-
36
-
-
38949189854
-
-
If we had defined CC as the maximal of the MIR for all possible parameter realizations in the elements of the channel, we would have concluded that the new defined capacity would be always reached for channels composed of elements that have equal parameters. Since we are often dealing with channels composed of elements that possess either equal or very similar parameters, the many channel capacities calculated throughout the paper can be considered to be the maximum over many coupling and parameter configurations.
-
If we had defined CC as the maximal of the MIR for all possible parameter realizations in the elements of the channel, we would have concluded that the new defined capacity would be always reached for channels composed of elements that have equal parameters. Since we are often dealing with channels composed of elements that possess either equal or very similar parameters, the many channel capacities calculated throughout the paper can be considered to be the maximum over many coupling and parameter configurations.
-
-
-
-
37
-
-
38949090218
-
-
For λ2 <0, one has to take into account the calculation of IC, using Eq. 3, the existence of a fractal set. Notice however that Eq. 1 can always be used to estimate the MIR, even if λ2 <0. From that, we arrive at the same conclusions concerning the channel capacity, i.e., CC (=0) CC (>0).
-
For λ2 <0, one has to take into account the calculation of IC, using Eq. 3, the existence of a fractal set. Notice however that Eq. 1 can always be used to estimate the MIR, even if λ2 <0. From that, we arrive at the same conclusions concerning the channel capacity, i.e., CC (=0) CC (>0).
-
-
-
-
39
-
-
1842532340
-
-
PNASA6 0027-8424 10.1073/pnas.0305966101
-
N. Schweighofer, Proc. Natl. Acad. Sci. U.S.A. PNASA6 0027-8424 10.1073/pnas.0305966101 101, 4655 (2004).
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 4655
-
-
Schweighofer, N.1
-
40
-
-
27144547553
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.94.188101
-
I. Belykh, E. de Lange, and M. Hasler, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.188101 94, 188101 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 188101
-
-
Belykh, I.1
De Lange, E.2
Hasler, M.3
-
41
-
-
0003915004
-
-
Cambridge University Press, Cambridge, UK
-
R. Badii and A. Politi, Complexity, Hierarchical Structures and Scaling in Physics (Cambridge University Press, Cambridge, UK, 1997).
-
(1997)
Complexity, Hierarchical Structures and Scaling in Physics
-
-
Badii, R.1
Politi, A.2
-
43
-
-
42749099466
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.69.056228
-
M. S. Baptista, S. Boccaletti, K. Josić, and I. Leyva, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.69.056228 69, 056228 (2004).
-
(2004)
Phys. Rev. e
, vol.69
, pp. 056228
-
-
Baptista, M.S.1
Boccaletti, S.2
Josić, K.3
Leyva, I.4
-
45
-
-
33846230106
-
-
PYLAAG 0375-9601 10.1016/j.physleta.2006.09.099
-
T. Pereira, M. S. Baptista, and J. Kurths, Phys. Lett. A PYLAAG 0375-9601 10.1016/j.physleta.2006.09.099 362, 159 (2007).
-
(2007)
Phys. Lett. A
, vol.362
, pp. 159
-
-
Pereira, T.1
Baptista, M.S.2
Kurths, J.3
-
47
-
-
28244433132
-
-
0167-2789
-
M. S. Baptista, Physica D. 212, 216 (2005). 0167-2789
-
(2005)
Physica D.
, vol.212
, pp. 216
-
-
Baptista, M.S.1
-
48
-
-
33847654390
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.75.026216
-
T. Pereira, M. S. Baptista, and J. Kurths, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.75.026216 75, 026216 (2007).
-
(2007)
Phys. Rev. e
, vol.75
, pp. 026216
-
-
Pereira, T.1
Baptista, M.S.2
Kurths, J.3
|