-
1
-
-
33750165194
-
Representation and approximation of solutions of initial value problems for differential equations in Hilbert space based on the Cayley transform, Progress in partial differential equations (C. Bandle et al., eds.)
-
MR1416572 (97h:34074)
-
D.Z. Arov, I.P. Gavrilyuk and V.L. Makarov, Representation and approximation of solutions of initial value problems for differential equations in Hilbert space based on the Cayley transform, Progress in partial differential equations (C. Bandle et al. eds.), vol. 1, Pitman Res. Notes Math. Sci., 1995, pp. 40-50.MR1416572 (97h:34074)
-
(1995)
Pitman Res. Notes Math. Sci.
, vol.1
, pp. 40-50
-
-
Arov, D.Z.1
Gavrilyuk, I.P.2
Makarov, V.L.3
-
3
-
-
33750162427
-
Stability estimates for a general discretization method
-
MR1035844 (91e:65104)
-
N.Yu. Bakaev, Stability estimates for a general discretization method, Soviet Math. Dokl. 40 (1990), 11-15.MR1035844 (91e:65104)
-
(1990)
Soviet Math. Dokl
, vol.40
, pp. 11-15
-
-
Bakaev, N.1
-
4
-
-
85009773222
-
-
Reports on Numerical Mathematics, Friedrich-Schiller- Universität Jena, 05-06 (2005), 1-25
-
T. Ju. Bohonova, I.P. Gavrilyuk, V.L. Makarov and V. Vasylyk, Exponentially convergent Duhamel’s like algorithms for differential equations with an operator coefficient possessing a variable domain in Banach space, Reports on Numerical Mathematics, Friedrich-Schiller- Universität Jena (http://www.minet.uni-jena.de/Math-Net/reports05/reports.html #2005), 05-06 (2005), 1-25.
-
Exponentially Convergent Duhamel’s like Algorithms for Differential Equations with an Operator Coefficient Possessing a Variable Domain in Banach Space
-
-
Bohonova, T.J.1
Gavrilyuk, I.P.2
Makarov, V.L.3
Vasylyk, V.4
-
5
-
-
0003766476
-
-
Springer-Verlag, Berlin, Heidelberg, New York et al, MR917480 (89m:76004)
-
C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, Heidelberg, New York et al., 1988.MR917480 (89m:76004)
-
(1988)
Spectral Methods in Fluid Dynamics
-
-
Canuto, C.1
Hussaini, M.Y.2
Quarteroni, A.3
Zang, T.A.4
-
6
-
-
38849180301
-
Fast Runge-Kutta approximation of inhomogeneous parabolic equations
-
M.L. Fernandez, Ch. Lubich, C. Palencia and A. Schädle, Fast Runge-Kutta approximation of inhomogeneous parabolic equations, Numerische Mathematik 5, (2005), 1-17.
-
(2005)
Numerische Mathematik
, vol.5
, pp. 1-17
-
-
Fernandez, M.L.1
Lubich, C.H.2
Palencia, C.3
Schädle, A.4
-
7
-
-
0141867960
-
-
Elsevier, Heidelberg
-
H. Fujita, N. Saito, and T. Suzuki, Operator Theory and Numerical Methods, Elsevier, Heidelberg, 2001.
-
(2001)
Operator Theory and Numerical Methods
-
-
Fujita, H.1
Saito, N.2
Suzuki, T.3
-
8
-
-
0001094238
-
Strongly P-positive operators and explicit representation of the solutions of initial value problems for second order differential equations in Banach space
-
MR1704587 (2001j:34072)
-
I.P. Gavrilyuk, Strongly P-positive operators and explicit representation of the solutions of initial value problems for second order differential equations in Banach space, Journ.of Math. Analysis and Appl. 1(88) (2003), 327-349.MR1704587 (2001j:34072)
-
(2003)
Journ.Of Math. Analysis and Appl
, vol.1
, Issue.88
, pp. 327-349
-
-
Gavrilyuk, I.P.1
-
9
-
-
38849083551
-
Algorithms without accuracy saturation and exponential convergent algorithms for operator equations
-
(ISSN 08686912)
-
I.P. Gavrilyuk, Algorithms without accuracy saturation and exponential convergent algorithms for operator equations, Journal of Numerical and Applied Mathematics (ISSN 08686912) 236 (1999), 28-43.
-
(1999)
Journal of Numerical and Applied Mathematics
, vol.236
, pp. 28-43
-
-
Gavrilyuk, I.P.1
-
10
-
-
0034936175
-
H-matrix approximation for elliptic solution operators in cylinder domains
-
MR1839197 (2002e:65064)
-
I.P. Gavrilyuk, W. Hackbusch and B.N. Khoromskij, H-matrix approximation for elliptic solution operators in cylinder domains, East-West Journal of Numerical Analysis 9 (2001), no. 1, 25-58.MR1839197 (2002e:65064)
-
(2001)
East-West Journal of Numerical Analysis
, vol.9
, Issue.1
, pp. 25-58
-
-
Gavrilyuk, I.P.1
Hackbusch, W.2
Khoromskij, B.N.3
-
11
-
-
0036022621
-
H-matrix Approximation for the Operator Exponential with Applications
-
MR1917366 (2003g:65061)
-
I.P. Gavrilyuk, W. Hackbusch and B.N. Khoromskij, H-matrix Approximation for the Operator Exponential with Applications, Numer. Math. 92 (2002), 83-111.MR1917366 (2003g:65061)
-
(2002)
Numer. Math
, vol.92
, pp. 83-111
-
-
Gavrilyuk, I.P.1
Hackbusch, W.2
Khoromskij, B.N.3
-
12
-
-
2942644816
-
Data-sparse approximation to the operator-valued functions of elliptic operator
-
MR2047088 (2005b:47086)
-
I.P. Gavrilyuk, W. Hackbusch and B.N. Khoromskij, Data-sparse approximation to the operator-valued functions of elliptic operator, Math. Comp. 73 (2004), 1297-1324.MR2047088 (2005b:47086)
-
(2004)
Math. Comp
, vol.73
, pp. 1297-1324
-
-
Gavrilyuk, I.P.1
Hackbusch, W.2
Khoromskij, B.N.3
-
13
-
-
17144410769
-
Hierarchical tensor-product approximation to the inverse and related operators for high-dimensional elliptic problems
-
MR2133692 (2006f:65049)
-
I.P. Gavrilyuk, W. Hackbusch and B.N. Khoromskij, Hierarchical tensor-product approximation to the inverse and related operators for high-dimensional elliptic problems, Computing 74 (2005), 131-157.MR2133692 (2006f:65049)
-
(2005)
Computing
, vol.74
, pp. 131-157
-
-
Gavrilyuk, I.P.1
Hackbusch, W.2
Khoromskij, B.N.3
-
14
-
-
14944359407
-
Data-sparse approximation of a class of operator-valued functions
-
MR2114643 (2005i:65068)
-
I.P. Gavrilyuk, W. Hackbusch and B.N. Khoromskij, Data-sparse approximation of a class of operator-valued functions, Math. Comp. 74 (2005), 681-708 MR2114643 (2005i:65068)
-
(2005)
Math. Comp
, vol.74
, pp. 681-708
-
-
Gavrilyuk, I.P.1
Hackbusch, W.2
Khoromskij, B.N.3
-
15
-
-
21344446470
-
Representation and approximation of the solution of an initial value problem for a first order differential eqation in Banach space
-
MR1394440 (97h:65076)
-
I.P. Gavrilyuk and V.L. Makarov, Representation and approximation of the solution of an initial value problem for a first order differential eqation in Banach space, Z. Anal. Anwend. (ZAA) 15 (1996), 495-527.MR1394440 (97h:65076)
-
(1996)
Z. Anal. Anwend. (ZAA)
, vol.15
, pp. 495-527
-
-
Gavrilyuk, I.P.1
Makarov, V.L.2
-
16
-
-
14944374194
-
Algorithms without accuracy saturation for evolution equations in Hilbert and Banach spaces
-
MR2114638 (2005j:65053)
-
I.P. Gavrilyuk and V.L. Makarov, Algorithms without accuracy saturation for evolution equations in Hilbert and Banach spaces, Math. Comp. 74 (2005), 555-583.MR2114638 (2005j:65053)
-
(2005)
Math. Comp
, vol.74
, pp. 555-583
-
-
Gavrilyuk, I.P.1
Makarov, V.L.2
-
17
-
-
85009773228
-
Exponentially convergent parallel discretization methods for the first order evolution equations
-
MR1892950 (2003f:65174)
-
I.P. Gavrilyuk and V.L. Makarov, Exponentially convergent parallel discretization methods for the first order evolution equations, Computational Methods in Applied Mathematics (CMAM) 1, 4, (2001), 333-355.MR1892950 (2003f:65174)
-
(2001)
Computational Methods in Applied Mathematics (CMAM)
, vol.1
, Issue.4
, pp. 333-355
-
-
Gavrilyuk, I.P.1
Makarov, V.L.2
-
18
-
-
0042113929
-
The Cayley transform and the solution of an initial value problem for a first order differential equation with an unbounded operator coefficient in Hilbert space
-
MR1281563 (95b:34096)
-
I.P. Gavrilyuk and V.L. Makarov, The Cayley transform and the solution of an initial value problem for a first order differential equation with an unbounded operator coefficient in Hilbert space, Numer. Func. Anal. Optimiz. 15, (1994), 583-598.MR1281563 (95b:34096)
-
(1994)
Numer. Func. Anal. Optimiz
, vol.15
, pp. 583-598
-
-
Gavrilyuk, I.P.1
Makarov, V.L.2
-
19
-
-
33750156255
-
Exponentially convergent parallel discretization methods for the first order differential equations
-
I.P. Gavrilyuk and V.L. Makarov, Exponentially convergent parallel discretization methods for the first order differential equations, Doklady of the Ukrainian Academy of Scienses 3, (2001), 1-6.
-
(2001)
Doklady of the Ukrainian Academy of Scienses
, vol.3
, pp. 1-6
-
-
Gavrilyuk, I.P.1
Makarov, V.L.2
-
20
-
-
33749034221
-
Exponentially convergent algorithms for the operator exponential with applications to inhomogeneous problems in Banach spaces
-
MR2192335 (2006m:65100)
-
I.P. Gavrilyuk and V.L. Makarov, Exponentially convergent algorithms for the operator exponential with applications to inhomogeneous problems in Banach spaces, SIAM J. Numer. Anal., 43(5):2144-2171, 2005.MR2192335 (2006m:65100)
-
(2005)
SIAM J. Numer. Anal.
, vol.43
, Issue.5
, pp. 2144-2171
-
-
Gavrilyuk, I.P.1
Makarov, V.L.2
-
21
-
-
0004603920
-
An explicit boundary integral representation of the solution of the two-dimensional heat equation and its discretization
-
MR1760898 (2001c:65129)
-
I.P. Gavrilyuk and V.L. Makarov, An explicit boundary integral representation of the solution of the two-dimensional heat equation and its discretization, J. Integral Equations Appl. 12, (Spring 2000), 1, 63-83.MR1760898 (2001c:65129)
-
(2000)
J. Integral Equations Appl. 12, (Spring
, vol.1
, pp. 63-83
-
-
Gavrilyuk, I.P.1
Makarov, V.L.2
-
23
-
-
85009797196
-
A new estimate of the Sinc method for linear parabolic problems including the initial point
-
MR2119621 (2005m:65214)
-
I.P. Gavrilyuk and V.L. Makarov and V. Vasylyk, A new estimate of the Sinc method for linear parabolic problems including the initial point, Computational Methods in Applied Mathematics (CMAM) 4, (2004), 2, 1-27.MR2119621 (2005m:65214)
-
(2004)
Computational Methods in Applied Mathematics (CMAM)
, vol.4
, Issue.2
, pp. 1-27
-
-
Gavrilyuk, I.P.1
Makarov, V.L.2
Vasylyk, V.3
-
24
-
-
0003686031
-
-
Oxford University Press, New York, Clarendon Press, Oxford, MR790497 (87c:47056)
-
J.A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New York, Clarendon Press, Oxford, 1985.MR790497 (87c:47056)
-
(1985)
Semigroups of Linear Operators and Applications
-
-
Goldstein, J.A.1
-
25
-
-
0009084553
-
Stability of time-stepping methods for abstract time-dependent parabolic problems
-
MR1619918 (99b:65072)
-
D. González and C. Palencia, Stability of time-stepping methods for abstract time-dependent parabolic problems, SIAM J. Numer. Anal. 35, (2004), 3, 973-989.MR1619918 (99b:65072)
-
(2004)
SIAM J. Numer. Anal
, vol.35
, Issue.3
, pp. 973-989
-
-
González, D.1
Palencia, C.2
-
27
-
-
0038776015
-
Fractional powers of operators acting in Banach spaces (In Russian)
-
MR0108733 (21:7447)
-
M.A. Krasnosel’skij and P.E. Sobolevskij, Fractional powers of operators acting in Banach spaces (in Russian), Doklady AN SSSR 129, (1959), 3, 499-502.MR0108733 (21:7447)
-
(1959)
Doklady AN SSSR
, vol.129
, Issue.3
, pp. 499-502
-
-
Krasnosel’Skij, M.A.1
Sobolevskij, P.E.2
-
28
-
-
0141569428
-
A parallel method for the numerical solution of integro-differential equation with positive memory
-
MR2012483 (2004k:65263)
-
K. Kwon and D. Sheen, A parallel method for the numerical solution of integro-differential equation with positive memory, Comput. Methods Appl. Mech. Engrg. 192, (2003), 41-42, 4641-4658.MR2012483 (2004k:65263)
-
(2003)
Comput. Methods Appl. Mech. Engrg
, vol.192
, Issue.41-42
, pp. 4641-4658
-
-
Kwon, K.1
Sheen, D.2
-
30
-
-
5144231600
-
On the numerical inversion of the Laplace transform of certain holomorphic mappings
-
MR2091405 (2005e:65210)
-
M. López-Fernández and C. Palencia, On the numerical inversion of the Laplace transform of certain holomorphic mappings, Applied Numerical Mathematics, 51, (2004), 289-303.MR2091405 (2005e:65210)
-
(2004)
Applied Numerical Mathematics
, vol.51
, pp. 289-303
-
-
López-Fernández, M.1
Palencia, C.2
-
34
-
-
0034407089
-
A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature
-
MR1648403 (2000i:65161)
-
D. Sheen, I.H. Sloan and V. Thomée, A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature, Math.Comp. 69, (2000), 177-195.MR1648403 (2000i:65161)
-
(2000)
Math.Comp.
, vol.69
, pp. 177-195
-
-
Sheen, D.1
Sloan, I.H.2
Thomée, V.3
-
35
-
-
0345016412
-
A parallel method for time-discretization of parabolic equations based on Laplace transformation and quadrature
-
MR1975267 (2004b:65161)
-
D. Sheen, I.H. Sloan and V. Thomée, A parallel method for time-discretization of parabolic equations based on Laplace transformation and quadrature, IMA Journal of Numerical Analysis, 23, (2003), 269-299.MR1975267 (2004b:65161)
-
(2003)
IMA Journal of Numerical Analysis
, vol.23
, pp. 269-299
-
-
Sheen, D.1
Sloan, I.H.2
Thomée, V.3
-
36
-
-
0347429939
-
Application of the semi-group theory to investigation of differential equations in Banach spaces (In Russian)
-
MR0105029 (21:3775)
-
M.Z. Solomjak, Application of the semi-group theory to investigation of differential equations in Banach spaces (in Russian), Doklady AN SSSR 122, (1958), 2, 766-769.MR0105029 (21:3775)
-
(1958)
Doklady AN SSSR
, vol.122
, Issue.2
, pp. 766-769
-
-
Solomjak, M.Z.1
-
38
-
-
0004073954
-
-
American Mathematical Society, New York, MR0106295 (21:5029)
-
G. Szegö, Orthogonal Polynomials. American Mathematical Society, New York, 1959.MR0106295 (21:5029)
-
(1959)
Orthogonal Polynomials
-
-
Szegö, G.1
-
40
-
-
85009759608
-
A high order parallel method for time discretisation of parabolic type equations based on Laplace transformation and quadrature
-
MR2112660 (2005i:65159)
-
V. Thomée, A high order parallel method for time discretisation of parabolic type equations based on Laplace transformation and quadrature, Int. J. Numer Anal. Model. 2 (2005), 85-96.MR2112660 (2005i:65159)
-
(2005)
Int. J. Numer Anal. Model
, vol.2
, pp. 85-96
-
-
Thomée, V.1
-
41
-
-
33750176808
-
Uniform exponentially convergent method for the first order evolution equation with unbounded operator coefficient
-
(in Russian)
-
V. Vasylyk, Uniform exponentially convergent method for the first order evolution equation with unbounded operator coefficient, Journal of Numerical and Applied Mathematics (ISSN 0868-6912), 1, (2003), 99-104 (in Russian).
-
(2003)
Journal of Numerical and Applied Mathematics
, Issue.1
, pp. 99-104
-
-
Vasylyk, V.1
|