-
1
-
-
0001356905
-
Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluids parfaits
-
1
-
V. I. Arnold, "Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluids parfaits," Ann. Inst. Fourier 16(1), 319-361 (1966).
-
(1966)
Ann. Inst. Fourier
, vol.16
, pp. 319-361
-
-
Arnold, V.I.1
-
4
-
-
0002783502
-
Singularities and Bifurcations of Potential Flows
-
Manchester Univ. Press Manchester
-
V. I. Arnold, Yu. M. Baryshnikov, and I. A. Bogaevsky, "Singularities and Bifurcations of Potential Flows," in S. N. Gurbatov, A. N. Malakhov, and A. I. Saichev, Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays, Particles (Manchester Univ. Press, Manchester, 1991), Suppl. 2, pp. 290-300.
-
(1991)
Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays, Particles
, pp. 290-300
-
-
Arnold, V.I.1
Baryshnikov Yu., M.2
Bogaevsky, I.A.3
Gurbatov, S.N.4
Malakhov, A.N.5
Saichev, A.I.6
-
5
-
-
0011153332
-
On the Geometrical Origin and the Solutions of a Degenerate Monge-Ampère Equation
-
Am. Math. Soc. Providence, RI
-
D. Bao and T. Ratiu, "On the Geometrical Origin and the Solutions of a Degenerate Monge-Ampère Equation," in Differential Geometry, Part 1: Partial Differential Equations on Manifolds (Am. Math. Soc., Providence, RI, 1993), Proc. Symp. Pure Math. 54, pp. 55-68.
-
(1993)
Differential Geometry, Part 1: Partial Differential Equations on Manifolds Proc. Symp. Pure Math. 54
, pp. 55-68
-
-
Bao, D.1
Ratiu, T.2
-
6
-
-
0036888140
-
Perestroikas of Shocks and Singularities of Minimum Functions
-
1-2
-
I. A. Bogaevsky, "Perestroikas of Shocks and Singularities of Minimum Functions," Physica D 173(1-2), 1-28 (2002); math.AP/0204237.
-
(2002)
Physica D
, vol.173
, pp. 1-28
-
-
Bogaevsky, I.A.1
-
7
-
-
0001052255
-
Groups of Diffeomorphisms and the Notion of an Incompressible Fluid
-
D. G. Ebin and J. Marsden, "Groups of Diffeomorphisms and the Notion of an Incompressible Fluid," Ann. Math., Ser. 2, 92, 102-163 (1970).
-
(1970)
Ann. Math., Ser. 2
, vol.92
, pp. 102-163
-
-
Ebin, D.G.1
Marsden, J.2
-
8
-
-
0002447660
-
Burgulence
-
Springer Berlin
-
U. Frisch and J. Bec, "Burgulence," in New Trends in Turbulence, Les Houches, 2000, Ed. by M. Lesieur, A. Yaglom, and F. David (Springer, Berlin, 2001), pp. 341-383.
-
(2001)
New Trends in Turbulence, les Houches, 2000
, pp. 341-383
-
-
Frisch, U.1
Bec, J.2
Lesieur, M.3
Yaglom, A.4
David, F.5
-
9
-
-
23944441093
-
Asymptotic Directions, Monge-Ampère Equations and the Geometry of Diffeomorphism Groups
-
Suppl.3
-
B. Khesin and G. Misiołek, "Asymptotic Directions, Monge-Ampère Equations and the Geometry of Diffeomorphism Groups," J. Math. Fluid Mech. 7,Suppl. 3, S365-S375 (2005).
-
(2005)
J. Math. Fluid Mech.
, vol.7
-
-
Khesin, B.1
Misiołek, G.2
-
10
-
-
34250112032
-
Curvature of the Group of Measure-Preserving Diffeomorphisms of the n-Dimensional Torus
-
6. [Sib. Math. J. 25, 893-903 (1984)]
-
A. M. Lukatskii, "Curvature of the Group of Measure-Preserving Diffeomorphisms of the n-Dimensional Torus," Sib. Mat. Zh. 25(6), 76-88 (1984) [Sib. Math. J. 25, 893-903 (1984)].
-
(1984)
Sib. Mat. Zh.
, vol.25
, pp. 76-88
-
-
Lukatskii, A.M.1
-
11
-
-
0035618489
-
Polar Factorization of Maps on Riemannian Manifolds
-
3
-
R. J. McCann, "Polar Factorization of Maps on Riemannian Manifolds," Geom. Funct. Anal. 11(3), 589-608 (2001).
-
(2001)
Geom. Funct. Anal.
, vol.11
, pp. 589-608
-
-
McCann, R.J.1
-
12
-
-
0001674071
-
Stability of Flows of Ideal Fluids and the Geometry of the Group of Diffeomorphisms
-
1
-
G. Misiołek, "Stability of Flows of Ideal Fluids and the Geometry of the Group of Diffeomorphisms," Indiana Univ. Math. J. 42(1), 215-235 (1993).
-
(1993)
Indiana Univ. Math. J.
, vol.42
, pp. 215-235
-
-
Misiołek, G.1
-
13
-
-
0001560970
-
The Geometry of Dissipative Evolution Equations: The Porous Medium Equation
-
1-2
-
F. Otto, "The Geometry of Dissipative Evolution Equations: The Porous Medium Equation," Commun. Part. Diff. Eqns. 26(1-2), 101-174 (2001).
-
(2001)
Commun. Part. Diff. Eqns.
, vol.26
, pp. 101-174
-
-
Otto, F.1
-
14
-
-
10144222397
-
For Ideal Fluids, Eulerian and Lagrangian Instabilities Are Equivalent
-
5
-
S. C. Preston, "For Ideal Fluids, Eulerian and Lagrangian Instabilities Are Equivalent," Geom. Funct. Anal. 14(5), 1044-1062 (2004).
-
(2004)
Geom. Funct. Anal.
, vol.14
, pp. 1044-1062
-
-
Preston, S.C.1
|