메뉴 건너뛰기




Volumn 23, Issue 1, 2008, Pages 77-102

Mining frequent generalized itemsets and generalized association rules without redundancy

Author keywords

Frequent generalized itemsets; Generalized association rules; Redundancy avoidance

Indexed keywords

FREQUENT GENERALIZED ITEMSETS; GENERALIZED ASSOCIATION RULES; REDUNDANCY AVOIDANCE;

EID: 38849151675     PISSN: 10009000     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11390-008-9107-1     Document Type: Article
Times cited : (19)

References (32)
  • 5
    • 1642409826 scopus 로고    scopus 로고
    • Fast algorithms for mining generalized frequent patterns of generalized association rules
    • March
    • Sriphaew K, Theeramunkong T. Fast algorithms for mining generalized frequent patterns of generalized association rules. IEICE Transactions on Information and Systems, March 2004, E87-D(3).
    • (2004) IEICE Transactions on Information and Systems
    • Sriphaew, K.1    Theeramunkong, T.2
  • 10
    • 0036565197 scopus 로고    scopus 로고
    • Pincer-Search: An efficient algorithm for discovering the maximum frequent set
    • 3
    • Lin D I, Kedem Z M. Pincer-Search: An efficient algorithm for discovering the maximum frequent set. IEEE Trans. Knowledge and Data Engineering (TKDE), 2002, 14(3): 553-566.
    • (2002) IEEE Trans. Knowledge and Data Engineering (TKDE) , vol.14 , pp. 553-566
    • Lin, D.I.1    Kedem, Z.M.2
  • 24
  • 25
    • 34548753313 scopus 로고    scopus 로고
    • Mining generalized association rules using pruning techniques
    • Maebashi City, Japan
    • Huang Y F, Wu C M. Mining generalized association rules using pruning techniques. In Proc. International Conference on Data Mining (ICDM), Maebashi City, Japan, 2002, pp.227-234.
    • (2002) Proc. International Conference on Data Mining (ICDM) , pp. 227-234
    • Huang, Y.F.1    Wu, C.M.2
  • 31
    • 84864177766 scopus 로고    scopus 로고
    • Synthetic Data Generation Code for Associations and Sequential Patterns (IBM Almaden Research Center)
    • Synthetic Data Generation Code for Associations and Sequential Patterns (IBM Almaden Research Center). http://www.almaden.ibm.com/software/quest/ Resources/datasets/syndata.html.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.