-
1
-
-
0035834415
-
Logic gates and computation from assembled nanowire building blocks
-
Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313.
-
(2001)
Science
, vol.294
, pp. 1313
-
-
Huang, Y.1
Duan, X.F.2
Cui, Y.3
Lauhon, L.J.4
Kim, K.H.5
Lieber, C.M.6
-
2
-
-
33750443920
-
Synthesis and characterization of Ge2Sb2Te5 nanowires with memory switching effect
-
Jung, Y.; Lee, S.-H.; Ko, D.-K.; Agarwal, R. Synthesis and characterization of Ge2Sb2Te5 nanowires with memory switching effect. J. Am. Chem. Soc. 2006, 128, 14026.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 14026
-
-
Jung, Y.1
Lee, S.-H.2
Ko, D.-K.3
Agarwal, R.4
-
3
-
-
33745686449
-
Nanowire-based biosensors
-
Patolsky, F.; Zheng, G.; Lieber, C. M. Nanowire-based biosensors. Anal. Chem., 2006, 78, 4260.
-
(2006)
Anal. Chem
, vol.78
, pp. 4260
-
-
Patolsky, F.1
Zheng, G.2
Lieber, C.M.3
-
4
-
-
33846462064
-
Multifunctional nanowire evanescent wave optical sensors
-
Sirbuly, D. J.; Tao, A.; Law, M.; Fan, R.; Yang, P. D. Multifunctional nanowire evanescent wave optical sensors. Adv. Mater. 2007, 61, 66.
-
(2007)
Adv. Mater
, vol.61
, pp. 66
-
-
Sirbuly, D.J.1
Tao, A.2
Law, M.3
Fan, R.4
Yang, P.D.5
-
5
-
-
12844269467
-
Nanowires for integrated multicolor nanophotonics
-
Huang, Y.; Duan, X. F.; Lieber, C M. Nanowires for integrated multicolor nanophotonics. Small 2005, 1, 142.
-
(2005)
Small
, vol.1
, pp. 142
-
-
Huang, Y.1
Duan, X.F.2
Lieber, C.M.3
-
6
-
-
33847712282
-
Single quantum dot nanowire LEDs
-
Minot, E. D.; Kelkensberg, F.; van Kouwen, M.; van Dam, J. A.; Kouwenhoven, L. P.; Zwiller, V.; Borgstrom, M. T.; Wunnicke, O.; Verheijen, M. A.; Bakkers, E. P. A. M. Single quantum dot nanowire LEDs. Nano Lett. 2007, 7, 367.
-
(2007)
Nano Lett
, vol.7
, pp. 367
-
-
Minot, E.D.1
Kelkensberg, F.2
van Kouwen, M.3
van Dam, J.A.4
Kouwenhoven, L.P.5
Zwiller, V.6
Borgstrom, M.T.7
Wunnicke, O.8
Verheijen, M.A.9
Bakkers, E.P.A.M.10
-
7
-
-
0037448573
-
Single-nanowire electrically driven lasers
-
Duan, X. F.; Huang, Y.; Agarwal, R.; Leiber, C. M. Single-nanowire electrically driven lasers. Nature 2003, 421, 241.
-
(2003)
Nature
, vol.421
, pp. 241
-
-
Duan, X.F.1
Huang, Y.2
Agarwal, R.3
Leiber, C.M.4
-
8
-
-
0035827304
-
Room-temperature ultraviolet nanowire nanolasers
-
Huang, M. H.; Mao, S.; Freik, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897.
-
(2001)
Science
, vol.292
, pp. 1897
-
-
Huang, M.H.1
Mao, S.2
Freik, H.3
Yan, H.Q.4
Wu, Y.Y.5
Kind, H.6
Weber, E.7
Russo, R.8
Yang, P.D.9
-
9
-
-
33846343590
-
Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire
-
van Vugt, L. K.; Rühle, S.; Vanmaekelbergh, D. Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire. Nano Lett. 2006, 6, 2707.
-
(2006)
Nano Lett
, vol.6
, pp. 2707
-
-
van Vugt, L.K.1
Rühle, S.2
Vanmaekelbergh, D.3
-
10
-
-
20344382050
-
Optical routing with nanoribbons and nanowire assemblies
-
Sirbuly, D. J.; Law, M.; Pauzauskie, P.; Yan, H. Q.; Maslov, A. V.; Knutsen, K.; Ning, C. Z.; Saykally, R. J.; Yang, P. D. Optical routing with nanoribbons and nanowire assemblies. Proc. Nat. Acad. Sci. 2005, 102, 7800.
-
(2005)
Proc. Nat. Acad. Sci
, vol.102
, pp. 7800
-
-
Sirbuly, D.J.1
Law, M.2
Pauzauskie, P.3
Yan, H.Q.4
Maslov, A.V.5
Knutsen, K.6
Ning, C.Z.7
Saykally, R.J.8
Yang, P.D.9
-
11
-
-
28344456271
-
GaN nanowire lasers with low lasing thresholds
-
Gradeeak, S.; Qian, F.; Li, Y.; Park, H. G.; Lieber, C. M. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 2005, 87, 173111.
-
(2005)
Appl. Phys. Lett
, vol.87
, pp. 173111
-
-
Gradeeak, S.1
Qian, F.2
Li, Y.3
Park, H.G.4
Lieber, C.M.5
-
12
-
-
19944402894
-
Lasing in single cadmium sulfide nanowire optical cavities
-
Agarwal, R.; Barrelet, C. J.; Lieber, C. M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 2005, 5, 917.
-
(2005)
Nano Lett
, vol.5
, pp. 917
-
-
Agarwal, R.1
Barrelet, C.J.2
Lieber, C.M.3
-
13
-
-
4344577323
-
Nanoribbon waveguides for subwavelength photonics integration
-
Law, M.; Sirbuly, D. J.; Johnson, J. C.; Goldberger, J.; Saykally, R. J.; Yang, P. D. Nanoribbon waveguides for subwavelength photonics integration. Science 2004, 305, 1269.
-
(2004)
Science
, vol.305
, pp. 1269
-
-
Law, M.1
Sirbuly, D.J.2
Johnson, J.C.3
Goldberger, J.4
Saykally, R.J.5
Yang, P.D.6
-
14
-
-
7644236587
-
Nanowire photonic circuit elements
-
Barrelet, C. J.; Greytak, A. B.; Lieber, C. M. Nanowire photonic circuit elements. Nano Lett. 2004, 4, 1981.
-
(1981)
Nano Lett
, vol.2004
, pp. 4
-
-
Barrelet, C.J.1
Greytak, A.B.2
Lieber, C.M.3
-
15
-
-
4644242654
-
Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity
-
Weisbuch, C.; Nishioka, M.; Ishikawa, A.; Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 1992, 69, 3314.
-
(1992)
Phys. Rev. Lett
, vol.69
, pp. 3314
-
-
Weisbuch, C.1
Nishioka, M.2
Ishikawa, A.3
Arakawa, Y.4
-
16
-
-
0033210695
-
Nonlinear optics of normal-mode-coupling semiconductor microcavities
-
Khitrova, G.; Gibbs, H. M.; Jahnke, F.; Kira, M.; Koch, S. W. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys. 1999, 71, 1591.
-
(1999)
Rev. Mod. Phys
, vol.71
, pp. 1591
-
-
Khitrova, G.1
Gibbs, H.M.2
Jahnke, F.3
Kira, M.4
Koch, S.W.5
-
17
-
-
33749189629
-
Bose-Einstein condensation of exciton polaritons
-
Kasprzak, J.; Richard, M.; Kundermann, S.; Baas, A.; Jeambrun, P.; Keeling, J. M. J.; Marchetti, F. M.; Szymanska, M. H.; Andre, R.; Staehli, J. L.; Savona, V.; Littlewood, P. B.; Deveaud, B.; Dang, L. S. Bose-Einstein condensation of exciton polaritons. Nature 2006, 443, 409.
-
(2006)
Nature
, vol.443
, pp. 409
-
-
Kasprzak, J.1
Richard, M.2
Kundermann, S.3
Baas, A.4
Jeambrun, P.5
Keeling, J.M.J.6
Marchetti, F.M.7
Szymanska, M.H.8
Andre, R.9
Staehli, J.L.10
Savona, V.11
Littlewood, P.B.12
Deveaud, B.13
Dang, L.S.14
-
18
-
-
24344435254
-
The exciton spectrum of zinc oxide
-
Thomas, D. G. The exciton spectrum of zinc oxide. J. Phys. Chem. Solids 1960, 15, 86.
-
(1960)
J. Phys. Chem. Solids
, vol.15
, pp. 86
-
-
Thomas, D.G.1
-
20
-
-
34548601456
-
Depth dependent eigen energies and damping of excitonic polaritons near a semiconductor surface
-
Lagois, J. Depth dependent eigen energies and damping of excitonic polaritons near a semiconductor surface. Phys. Rev. B: Condens. Matter 1981, 23, 5511.
-
(1981)
Phys. Rev. B: Condens. Matter
, vol.23
, pp. 5511
-
-
Lagois, J.1
-
21
-
-
42749101909
-
Temperature-dependent exciton polariton photoluminescence in ZnO films
-
Toropov, A. A.; Nekrutkina, O. V.; Shubina, T. V.; Gruber, T.; Kirchner, C.; Waag, A.; Karlsson, K. F.; Holtz, P. O.; Monemar, B. Temperature-dependent exciton polariton photoluminescence in ZnO films. Phys. Rev. B: Condens. Matter 2004, 69, 165205.
-
(2004)
Phys. Rev. B: Condens. Matter
, vol.69
, pp. 165205
-
-
Toropov, A.A.1
Nekrutkina, O.V.2
Shubina, T.V.3
Gruber, T.4
Kirchner, C.5
Waag, A.6
Karlsson, K.F.7
Holtz, P.O.8
Monemar, B.9
-
22
-
-
0037091404
-
ZnO as a material mostly adapted for the realization of roomtemperature polariton lasers
-
Zamfirescu, M.; Kovokin, A.; Gil, B.; Malpuech, G.; Kaliteevski, M. ZnO as a material mostly adapted for the realization of roomtemperature polariton lasers. Phys. Rev. B: Condens. Matter 2002, 65, 161205.
-
(2002)
Phys. Rev. B: Condens. Matter
, vol.65
, pp. 161205
-
-
Zamfirescu, M.1
Kovokin, A.2
Gil, B.3
Malpuech, G.4
Kaliteevski, M.5
-
23
-
-
33749500751
-
Exciton-polaritons confined in a ZnO nanowire cavity
-
van Vugt, L. K.; Rühle, S.; Ravindran, P.; Gerritsen, H. C.; Kuipers, L.; Vanmaekelbergh, D. Exciton-polaritons confined in a ZnO nanowire cavity. Phys. Rev. Lett. 2006, 97, 147401.
-
(2006)
Phys. Rev. Lett
, vol.97
, pp. 147401
-
-
van Vugt, L.K.1
Rühle, S.2
Ravindran, P.3
Gerritsen, H.C.4
Kuipers, L.5
Vanmaekelbergh, D.6
-
24
-
-
33646508587
-
-
Prasanth, R.; van Vugt, L. K.; Vanmaekelbergh, D. A. M.; Gerritsen, H. C Resonance enhancement of optical second harmonic generation in a ZnO nanowire. Appl. Phys. Lett. 2006, 88, 181501.
-
Prasanth, R.; van Vugt, L. K.; Vanmaekelbergh, D. A. M.; Gerritsen, H. C Resonance enhancement of optical second harmonic generation in a ZnO nanowire. Appl. Phys. Lett. 2006, 88, 181501.
-
-
-
-
25
-
-
3042715648
-
Excitonic polaron and phonon assisted photoluminescence of ZnO nanowires
-
Hsu, H.-C.; Hsieh, W.-F. Excitonic polaron and phonon assisted photoluminescence of ZnO nanowires. Solid State Commun. 2004, 131, 371.
-
(2004)
Solid State Commun
, vol.131
, pp. 371
-
-
Hsu, H.-C.1
Hsieh, W.-F.2
-
26
-
-
35548994526
-
Free exciton emission and dephasing in individual ZnO nanowires
-
Zhang, Y.; Chen, D.-J.; Lee, C.-T. Free exciton emission and dephasing in individual ZnO nanowires. Appl. Phys. Lett. 2007, 91, 161911.
-
(2007)
Appl. Phys. Lett
, vol.91
, pp. 161911
-
-
Zhang, Y.1
Chen, D.-J.2
Lee, C.-T.3
-
27
-
-
11344256220
-
The oscillator strength of extended exciton states and possibility for very fast scintillators
-
Wilkinson, J.; Ucer, K. B.; Williams, R. T. The oscillator strength of extended exciton states and possibility for very fast scintillators. Nucl. Instrum. Methods Phys. Res., Sect. A 2005, 537, 66.
-
(2005)
Nucl. Instrum. Methods Phys. Res., Sect. A
, vol.537
, pp. 66
-
-
Wilkinson, J.1
Ucer, K.B.2
Williams, R.T.3
-
28
-
-
38749115195
-
-
We calculated the exciton polariton dispersion curve for a ZnO nanowire using ε(ω,k)=ε∞(1+Σ j=A,B,C Ωjfj/ω j,T2-ω2)=c 2(2k⊥2+k ∥2)/ω2 with the background dielectric constant εinfin; the speed of light in vacuum c, the oscillator strength, fj, which can be expressed by the transverse (ωj,T) and longitudinal (ωj,L) resonance frequencies (fj =ωj,L2- ωjTω2, a prefactor Ωj as defined in ref 20, and a factor Γ, which describes the enhancement of the oscillator strength. The resonant frequencies (for A, B, and C excitons) were taken as for a macroscopic ZnO crystal20 with
-
⊥ = π/d as the wavevector perpendicular to the nanowire long axis (d is the nanowire diameter).
-
-
-
|