-
2
-
-
0034723001
-
-
Manna, L.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc. 2000, 122, 12700.
-
(2000)
J. Am. Chem. Soc
, vol.122
, pp. 12700
-
-
Manna, L.1
Scher, E.C.2
Alivisatos, A.P.3
-
3
-
-
0034644601
-
-
Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H.-J.; Bawendi, M. G. Science 2000, 290, 314.
-
(2000)
Science
, vol.290
, pp. 314
-
-
Klimov, V.I.1
Mikhailovsky, A.A.2
Xu, S.3
Malko, A.4
Hollingsworth, J.A.5
Leatherdale, C.A.6
Eisler, H.-J.7
Bawendi, M.G.8
-
4
-
-
0029826336
-
-
Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Nature 1996, 383, 802.
-
(1996)
Nature
, vol.383
, pp. 802
-
-
Nirmal, M.1
Dabbousi, B.O.2
Bawendi, M.G.3
Macklin, J.J.4
Trautman, J.K.5
Harris, T.D.6
Brus, L.E.7
-
5
-
-
1642460918
-
-
Fisher, B. R.; Eisler, H.-J.; Stott, N. E.; Bawendi, M. G. J. Phys. Chem. B 2004, 108, 143.
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 143
-
-
Fisher, B.R.1
Eisler, H.-J.2
Stott, N.E.3
Bawendi, M.G.4
-
6
-
-
33645681475
-
-
Briebricher, A.; Sauer, M.; Tinnefeld, P. J. Phys. Chem. B 2006, 110, 5174.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 5174
-
-
Briebricher, A.1
Sauer, M.2
Tinnefeld, P.3
-
7
-
-
0041494363
-
-
Parak, W. J.; Gerion, D.; Pellegrino, T.; Zanchet, D.; Micheel, C.; Williams, S. C.; Boudreau, R.; Le Gros, M. A.; Larabell, C. A.; Alivisatos, A. P. Nanotechnology 2003, 14, R15.
-
(2003)
Nanotechnology
, vol.14
-
-
Parak, W.J.1
Gerion, D.2
Pellegrino, T.3
Zanchet, D.4
Micheel, C.5
Williams, S.C.6
Boudreau, R.7
Le Gros, M.A.8
Larabell, C.A.9
Alivisatos, A.P.10
-
9
-
-
9444296051
-
-
Sheats, J. R.; Antoniadis, H.; Hueschen, M.; Leonard, W.; Miller, J.; Moon, R.; Roitman, D.; Stocking, A. Science 1996, 273, 884.
-
(1996)
Science
, vol.273
, pp. 884
-
-
Sheats, J.R.1
Antoniadis, H.2
Hueschen, M.3
Leonard, W.4
Miller, J.5
Moon, R.6
Roitman, D.7
Stocking, A.8
-
10
-
-
0028088282
-
-
Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Nature 1994, 370, 354.
-
(1994)
Nature
, vol.370
, pp. 354
-
-
Colvin, V.L.1
Schlamp, M.C.2
Alivisatos, A.P.3
-
11
-
-
33645387046
-
-
Jialong, Z.; Bardecker, J. A.; Munro, A. M.; Liu, M. S.; Yuhua, N.; I-Kang, D.; Jingdong, L.; Baoguan, C.; Jen, A. K.-Y.; Ginger, D. S. Nano Lett. 2006, 6 (3), 463.
-
(2006)
Nano Lett
, vol.6
, Issue.3
, pp. 463
-
-
Jialong, Z.1
Bardecker, J.A.2
Munro, A.M.3
Liu, M.S.4
Yuhua, N.5
I-Kang, D.6
Jingdong, L.7
Baoguan, C.8
Jen, A.K.-Y.9
Ginger, D.S.10
-
12
-
-
0037192480
-
-
Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425.
-
(2002)
Science
, vol.295
, pp. 2425
-
-
Huynh, W.U.1
Dittmer, J.J.2
Alivisatos, A.P.3
-
13
-
-
33746288957
-
-
Cui, D.; Jian, X.; Sheng-Youg, X.; Paradee, G.; Lewis, B. A.; Gerhold, M. D. IEEE Trans. Nanotechnol. 2006, 5 (4), 362.
-
(2006)
IEEE Trans. Nanotechnol
, vol.5
, Issue.4
, pp. 362
-
-
Cui, D.1
Jian, X.2
Sheng-Youg, X.3
Paradee, G.4
Lewis, B.A.5
Gerhold, M.D.6
-
14
-
-
11344286160
-
-
Sundar, V. C.; Eisler, H.-J.; Deng, T.; Chan, Y.; Thomas, E. L.; Bawendi, M. G. Adv. Mater. 2004, 16, 2137.
-
(2004)
Adv. Mater
, vol.16
, pp. 2137
-
-
Sundar, V.C.1
Eisler, H.-J.2
Deng, T.3
Chan, Y.4
Thomas, E.L.5
Bawendi, M.G.6
-
15
-
-
4344586733
-
-
Brookmann, X.; Giacobino, E.; Dahan, M.; Hermier, J. P. Appl. Phys Lett. 2004, 85, 712.
-
(2004)
Appl. Phys Lett
, vol.85
, pp. 712
-
-
Brookmann, X.1
Giacobino, E.2
Dahan, M.3
Hermier, J.P.4
-
16
-
-
24044482072
-
-
Englund, D.; Fattal, D.; Waks, E.; Solomon, G.; Zhang, B.; Nakaoka, T.; Arakawa, Y.; Yamamoto, Y.; Vučković, J. Phys. Rev. Lett. 2005, 95, 013904.
-
(2005)
Phys. Rev. Lett
, vol.95
, pp. 013904
-
-
Englund, D.1
Fattal, D.2
Waks, E.3
Solomon, G.4
Zhang, B.5
Nakaoka, T.6
Arakawa, Y.7
Yamamoto, Y.8
Vučković, J.9
-
19
-
-
30344480531
-
-
Fushman, I.; Englund, D.; Vuckovic, J. Appl. Phys. Lett. 2005, 87, 241102.
-
(2005)
Appl. Phys. Lett
, vol.87
, pp. 241102
-
-
Fushman, I.1
Englund, D.2
Vuckovic, J.3
-
20
-
-
33947302094
-
-
Bose, R.; Yang, X.; Chatterjee, R.; Gao, J.; Wong, C. W. Appl. Phys. Lett. 2007, 90, 111117.
-
(2007)
Appl. Phys. Lett
, vol.90
, pp. 111117
-
-
Bose, R.1
Yang, X.2
Chatterjee, R.3
Gao, J.4
Wong, C.W.5
-
21
-
-
34248545708
-
-
Wu, Z.; Mi, Z.; Bhattacharya, P.; Zhu, T.; Xu, J. Appl. Phys. Lett. 2007, 90, 171105.
-
(2007)
Appl. Phys. Lett
, vol.90
, pp. 171105
-
-
Wu, Z.1
Mi, Z.2
Bhattacharya, P.3
Zhu, T.4
Xu, J.5
-
23
-
-
36248940883
-
-
Carbone, L.; Nobile, C.; De Giorgi, M.; Della Sala, F.; Morello, G.; Pompa, P. P.; Hytch, M.; Snoeck, E.; Fiore, A.; Franchini, I. R.; Nadasan, M.; Silvestre, A. F.; Chiodo, L.; Rudera, S.; Cingolani, R.; Krahne, R.; Manna, L. Nano Lett. 2007, 7 (10), 2942.
-
(2007)
Nano Lett
, vol.7
, Issue.10
, pp. 2942
-
-
Carbone, L.1
Nobile, C.2
De Giorgi, M.3
Della Sala, F.4
Morello, G.5
Pompa, P.P.6
Hytch, M.7
Snoeck, E.8
Fiore, A.9
Franchini, I.R.10
Nadasan, M.11
Silvestre, A.F.12
Chiodo, L.13
Rudera, S.14
Cingolani, R.15
Krahne, R.16
Manna, L.17
-
24
-
-
36249000148
-
-
Talapin, D. V.; Nelson, J. H.; Shevchenko, E. V.; Aloni, S.; Sadtler, B.; Alivisatos A. P. Nano Lett. 2007, 7 (10), 2951.
-
(2007)
Nano Lett
, vol.7
, Issue.10
, pp. 2951
-
-
Talapin, D.V.1
Nelson, J.H.2
Shevchenko, E.V.3
Aloni, S.4
Sadtler, B.5
Alivisatos, A.P.6
-
25
-
-
38749103682
-
-
The seeded growth approach allows to grow core/shell nanorod structures at high temperatures (>350 °C), and this leads to highly monodisperse elongated structures with few crystallographic defects. The elongated shell strongly increases the absorption cross-section of the nanocrystals in the blue - UV region with respect to the absorption of spherical core-shell nanocrystals with comparable quantum yield, and therefore a brighter emission is expected. The Stokes shift between the first excitonic peak and the DR-NC emission peak (the latter centered at ∼600 nm with a full-width-at-half-maximum (FWHM) of 24 nm) is only slightly affected by the rod length, therefore confirming that the radiative recombination process is mainly localized in the core (i.e., seed) region.
-
The seeded growth approach allows to grow core/shell nanorod structures at high temperatures (>350 °C), and this leads to highly monodisperse elongated structures with few crystallographic defects. The elongated shell strongly increases the absorption cross-section of the nanocrystals in the blue - UV region with respect to the absorption of spherical core-shell nanocrystals with comparable quantum yield, and therefore a brighter emission is expected. The Stokes shift between the first excitonic peak and the DR-NC emission peak (the latter centered at ∼600 nm with a full-width-at-half-maximum (FWHM) of 24 nm) is only slightly affected by the rod length, therefore confirming that the radiative recombination process is mainly localized in the core (i.e., seed) region.
-
-
-
-
26
-
-
33845787982
-
-
Martiradonna, L.; Stomeo, T.; Carbone, L.; Morello, G.; Salhi, A.; De Giorgi, M.; Cingolani, R.; De Vittorio, M. Phys. Status Solidi B 2006, 15, 3972.
-
(2006)
Phys. Status Solidi B
, vol.15
, pp. 3972
-
-
Martiradonna, L.1
Stomeo, T.2
Carbone, L.3
Morello, G.4
Salhi, A.5
De Giorgi, M.6
Cingolani, R.7
De Vittorio, M.8
-
28
-
-
34247250283
-
-
Shirane, M.; Rono, S.; Ushida, J.; Onkouchi, S.; Ikeda, N.; Sugimoto, Y.; Tomita, A. J. Appl. Phys. 2007, 101, 073107.
-
(2007)
J. Appl. Phys
, vol.101
, pp. 073107
-
-
Shirane, M.1
Rono, S.2
Ushida, J.3
Onkouchi, S.4
Ikeda, N.5
Sugimoto, Y.6
Tomita, A.7
-
29
-
-
0242499516
-
-
Akahane, Y.; Asano, T.; Song, B.-S.; Noda, S. Nature 2003, 425, 944.
-
(2003)
Nature
, vol.425
, pp. 944
-
-
Akahane, Y.1
Asano, T.2
Song, B.-S.3
Noda, S.4
-
30
-
-
38749118796
-
-
This low Q value is limited by large losses in both out-of-plane and in-plane directions because photonic band-gap exists in only relatively high frequency regions and it is at best very narrow
-
This low Q value is limited by large losses in both out-of-plane and in-plane directions because photonic band-gap exists in only relatively high frequency regions and it is at best very narrow.
-
-
-
-
32
-
-
38749087397
-
-
The electron beam lithography process was carried out on a JEOL JBX-6000 lithography system (acceleration voltage = 50 KV, beam current = 120 pA), with modulated dose along the pattern in order to compensate the proximity effect between neighboring holes. The sample was then developed in ZED-N50 solvent and rinsed in ZMD-B (both from ZEON Corporation).
-
The electron beam lithography process was carried out on a JEOL JBX-6000 lithography system (acceleration voltage = 50 KV, beam current = 120 pA), with modulated dose along the pattern in order to compensate the proximity effect between neighboring holes. The sample was then developed in ZED-N50 solvent and rinsed in ZMD-B (both from ZEON Corporation).
-
-
-
-
33
-
-
38749099993
-
-
Slight deviations (in the range of the resolution limit of the lithographic process) of the fabricated inner holes radii from the expected values can explain the reduction of the experimental Q-factor from the simulated one. Further improvements in the control of the lithographic exposure parameters will predictably lead to a better match between theoretical and experimental performances
-
Slight deviations (in the range of the resolution limit of the lithographic process) of the fabricated inner holes radii from the expected values can explain the reduction of the experimental Q-factor from the simulated one. Further improvements in the control of the lithographic exposure parameters will predictably lead to a better match between theoretical and experimental performances.
-
-
-
|