메뉴 건너뛰기




Volumn 68, Issue 7, 2008, Pages 1898-1908

Global and blow-up solutions for a mutualistic model

Author keywords

Blow up solution; Degenerate reaction diffusion system; Global solution; Mutualistic model

Indexed keywords

ABSORPTION; MATHEMATICAL MODELS; NONLINEAR EQUATIONS; POPULATION STATISTICS;

EID: 38749101359     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2007.01.060     Document Type: Article
Times cited : (6)

References (11)
  • 1
    • 0032155992 scopus 로고    scopus 로고
    • Blowup in diffusion equations: A survey
    • Bandle C., and Brunner H. Blowup in diffusion equations: A survey. J. Comput. Appl. Math. 97 (1998) 3-22
    • (1998) J. Comput. Appl. Math. , vol.97 , pp. 3-22
    • Bandle, C.1    Brunner, H.2
  • 2
    • 34250131744 scopus 로고
    • Blow-up of solutions of nonlinear degenerate parabolic equations
    • Friedman A., and Mcleod B. Blow-up of solutions of nonlinear degenerate parabolic equations. Arch. Ration. Mech. Anal. 96 (1987) 55-80
    • (1987) Arch. Ration. Mech. Anal. , vol.96 , pp. 55-80
    • Friedman, A.1    Mcleod, B.2
  • 3
    • 1842692780 scopus 로고    scopus 로고
    • The problem of blow-up in nonlinear parabolic equations
    • Galaktionov V.A., and Vazquez J.L. The problem of blow-up in nonlinear parabolic equations. Discrete Contin. Dyn. Syst. 8 (2002) 399-433
    • (2002) Discrete Contin. Dyn. Syst. , vol.8 , pp. 399-433
    • Galaktionov, V.A.1    Vazquez, J.L.2
  • 4
    • 33646124248 scopus 로고    scopus 로고
    • A degenerate parabolic system with self-diffusion for a mutualistic model in ecology
    • Kim K.I., and Lin Z. A degenerate parabolic system with self-diffusion for a mutualistic model in ecology. Nonlinear Anal. RWA 7 4 (2006) 597-609
    • (2006) Nonlinear Anal. RWA , vol.7 , Issue.4 , pp. 597-609
    • Kim, K.I.1    Lin, Z.2
  • 5
    • 0036898576 scopus 로고    scopus 로고
    • Global existence and nonexistence for degenerate parabolic systems
    • Li Y.X., Deng W.B., and Xie C.H. Global existence and nonexistence for degenerate parabolic systems. Proc. Amer. Math. Soc. 130 (2002) 3661-3670
    • (2002) Proc. Amer. Math. Soc. , vol.130 , pp. 3661-3670
    • Li, Y.X.1    Deng, W.B.2    Xie, C.H.3
  • 6
    • 0035392126 scopus 로고    scopus 로고
    • On diffusion-induced blowups in a mutualistic model
    • Lou Y., Nagylaki T., and Ni W.M. On diffusion-induced blowups in a mutualistic model. Nonlinear Anal. TMA 45 (2001) 329-342
    • (2001) Nonlinear Anal. TMA , vol.45 , pp. 329-342
    • Lou, Y.1    Nagylaki, T.2    Ni, W.M.3
  • 8
    • 0036814458 scopus 로고    scopus 로고
    • Some degenerate and quasilinear parabolic system not in divergence form
    • Wang M.X. Some degenerate and quasilinear parabolic system not in divergence form. J. Math. Anal. Appl. 274 (2002) 424-436
    • (2002) J. Math. Anal. Appl. , vol.274 , pp. 424-436
    • Wang, M.X.1
  • 9
    • 23044523569 scopus 로고    scopus 로고
    • The blowup for weakly coupled reaction-diffusion systems
    • Wang L.W. The blowup for weakly coupled reaction-diffusion systems. Proc. Amer. Math. Soc. 12 (2000) 89-95
    • (2000) Proc. Amer. Math. Soc. , vol.12 , pp. 89-95
    • Wang, L.W.1
  • 10
    • 0034340171 scopus 로고    scopus 로고
    • A nonlinear degenerate diffusion equation not in divergence form
    • Wang S., Wang M.X., and Xie C.H. A nonlinear degenerate diffusion equation not in divergence form. Z. Angew. Math. Phys. 51 (2000) 149-159
    • (2000) Z. Angew. Math. Phys. , vol.51 , pp. 149-159
    • Wang, S.1    Wang, M.X.2    Xie, C.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.