-
1
-
-
0003174082
-
The numerical solution of fifth order boundary-value problems with sixth degree B-spline functions
-
Caglar H.N., Caglar S.H., and Twizell E.E. The numerical solution of fifth order boundary-value problems with sixth degree B-spline functions. Appl. Math. Lett. 12 (1999) 25-30
-
(1999)
Appl. Math. Lett.
, vol.12
, pp. 25-30
-
-
Caglar, H.N.1
Caglar, S.H.2
Twizell, E.E.3
-
2
-
-
34249046099
-
Variational iteration technique for solving higher oreder boundary-value problems
-
Aslam Noor M., and Mohyud-Din S.T. Variational iteration technique for solving higher oreder boundary-value problems. Appl. Math. Comput. 189 (2007) 1929-1942
-
(2007)
Appl. Math. Comput.
, vol.189
, pp. 1929-1942
-
-
Aslam Noor, M.1
Mohyud-Din, S.T.2
-
3
-
-
34248200371
-
The modified decomposition method for eighth-order boundary-value problems
-
Mestrovic M. The modified decomposition method for eighth-order boundary-value problems. Appl. Math. Comput. 188 (2007) 1437-1444
-
(2007)
Appl. Math. Comput.
, vol.188
, pp. 1437-1444
-
-
Mestrovic, M.1
-
4
-
-
34548154022
-
-
A. Golbabai, M. Javidi, Application of homotopy perturbation method for solving eighth-order boundary-value problems, Appl. Math. Comput. in press, doi:10.1016/j.amc.2007.02.091.
-
A. Golbabai, M. Javidi, Application of homotopy perturbation method for solving eighth-order boundary-value problems, Appl. Math. Comput. in press, doi:10.1016/j.amc.2007.02.091.
-
-
-
-
5
-
-
0000092673
-
Variational iteration method-a kind of nonlinear analytical technique: some examples
-
He J.H. Variational iteration method-a kind of nonlinear analytical technique: some examples. Int. J. Nonlin. Mech. 34 (1999) 699-708
-
(1999)
Int. J. Nonlin. Mech.
, vol.34
, pp. 699-708
-
-
He, J.H.1
-
6
-
-
0040184009
-
Variational method for autonomous ordinary differential equations
-
He J.H. Variational method for autonomous ordinary differential equations. Appl. Math. Comput. 114 (2000) 115-123
-
(2000)
Appl. Math. Comput.
, vol.114
, pp. 115-123
-
-
He, J.H.1
-
7
-
-
0035617688
-
Variational theory for linear magneto-electro-elasticity
-
He J.H. Variational theory for linear magneto-electro-elasticity. Int. J. Nonlin. Sci. Numer. Simulat. 2 4 (2001) 309-316
-
(2001)
Int. J. Nonlin. Sci. Numer. Simulat.
, vol.2
, Issue.4
, pp. 309-316
-
-
He, J.H.1
-
8
-
-
0041621600
-
Variational principle for some nonlinear partial differential equations with variable coefficients
-
He J.H. Variational principle for some nonlinear partial differential equations with variable coefficients. Chaos, Solitons Fract. 19 4 (2004) 847-851
-
(2004)
Chaos, Solitons Fract.
, vol.19
, Issue.4
, pp. 847-851
-
-
He, J.H.1
-
9
-
-
0023978973
-
Spectral Galerkin methods for the primary two-point boundary-value problems in modeling viscoelastic flows
-
Davies A.R., Karageoghis A., and Philips T.N. Spectral Galerkin methods for the primary two-point boundary-value problems in modeling viscoelastic flows. Int . J. Numer. Methods Eng. 26 (1988) 647-662
-
(1988)
Int . J. Numer. Methods Eng.
, vol.26
, pp. 647-662
-
-
Davies, A.R.1
Karageoghis, A.2
Philips, T.N.3
-
10
-
-
0023998211
-
Spectral collocation methods for the primary two-point boundary-value problems in modeling viscoelastic flows
-
Karageoghis A., Philips T.N., and Davies A.R. Spectral collocation methods for the primary two-point boundary-value problems in modeling viscoelastic flows. Int. J. Numer. Methods Eng. 26 (1998) 805-813
-
(1998)
Int. J. Numer. Methods Eng.
, vol.26
, pp. 805-813
-
-
Karageoghis, A.1
Philips, T.N.2
Davies, A.R.3
-
11
-
-
0032307661
-
Approximate analytical solution for seepage flow with fractional derivatives in porous media
-
He J.H. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 167 (1998) 57-68
-
(1998)
Comput. Methods Appl. Mech. Eng.
, vol.167
, pp. 57-68
-
-
He, J.H.1
-
12
-
-
0032308350
-
Approximate solution of nonlinear differential equations with convolution product nonlinearities
-
He J.H. Approximate solution of nonlinear differential equations with convolution product nonlinearities. Comput. Methods Appl. Mech. Eng. 167 (1998) 69-73
-
(1998)
Comput. Methods Appl. Mech. Eng.
, vol.167
, pp. 69-73
-
-
He, J.H.1
-
13
-
-
0037431567
-
A simple perturbation approach to Blasius equation
-
He J.H. A simple perturbation approach to Blasius equation. Appl. Math. Comput. 140 (2003) 217-222
-
(2003)
Appl. Math. Comput.
, vol.140
, pp. 217-222
-
-
He, J.H.1
-
14
-
-
10244263652
-
An iteration formulation for normalized diode characteristics
-
He J.H., Wan Y.Q., and Guo Q. An iteration formulation for normalized diode characteristics. Int. J. Circ. Theory Appl. 32 (2004) 629-632
-
(2004)
Int. J. Circ. Theory Appl.
, vol.32
, pp. 629-632
-
-
He, J.H.1
Wan, Y.Q.2
Guo, Q.3
-
15
-
-
8344254453
-
A generalized variational principle in micromorphic thermoelasticity
-
He J.H. A generalized variational principle in micromorphic thermoelasticity. Mech. Res. Commun. 32 (2005) 93-98
-
(2005)
Mech. Res. Commun.
, vol.32
, pp. 93-98
-
-
He, J.H.1
-
16
-
-
1142300799
-
Variational approach to nonlinear electrochemical system
-
Liu H.M. Variational approach to nonlinear electrochemical system. Int. J. Nonlinear Sci. Numer. Simulat. 5 (2004) 95-96
-
(2004)
Int. J. Nonlinear Sci. Numer. Simulat.
, vol.5
, pp. 95-96
-
-
Liu, H.M.1
-
17
-
-
4243080806
-
Generalized variational principles for ion acoustic plasma waves by He's semi-inverse method
-
Liu H.M. Generalized variational principles for ion acoustic plasma waves by He's semi-inverse method. Chaos, Solitons Fract. 23 (2005) 573-576
-
(2005)
Chaos, Solitons Fract.
, vol.23
, pp. 573-576
-
-
Liu, H.M.1
-
18
-
-
34447254290
-
-
S.Q. Wang, J.H. He, Variational iteration method for solving integro-differential equations, Phys. Lett. A, in press, doi:10.1016/j.physleta.2007.02.049.
-
S.Q. Wang, J.H. He, Variational iteration method for solving integro-differential equations, Phys. Lett. A, in press, doi:10.1016/j.physleta.2007.02.049.
-
-
-
|